國立清華大學104學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 (0527) 甲組(工程組) 考試科目(代碼):工程數學 (2701)

1. Solve the following initial value problem with Laplace transform.

$$y'' + 4xy' - 4y = 0$$
, $y(0) = 0$, $y'(0) = 6$ (10%)

2. Obtain series solution for following ODE.

$$x^2y'' + xy' + \left(x^2 - \frac{1}{9}\right)y = 0 ag{14\%}$$

3. Solve for
$$y' + \left(\frac{x^2 + y^2 + x}{2xy}\right) = 0$$
 (5%)

4. Obtain solution for following initial value problem.

$$y'''+4y''-3y'-18y=0$$
, $y(0)=3$, $y'(0)=2$, $y''(0)=11$ (6%)

5. (a) Apply Leibniz rule to check
$$y(x) = e^x + \int_0^x t^2 \cosh(x - t) dt$$
 is the solution of $y'' - y = 2x$, $y(0) = y'(0) = 1$ (5%)

(b) Find the eigenvalues and eigenvectors of
$$\begin{bmatrix} i & 1+i \\ -1+i & 0 \end{bmatrix}$$
 (5%)

- (c) Evaluate the surface integral $\oint_S \vec{F} \cdot \hat{n} \, dS$ where $\vec{F} = e^x \hat{x} + e^y \hat{y} + e^z \hat{z}$ and S is the surface of the cube $|x| \le 5$, $|y| \le 5$, $|z| \le 5$. (5%)
- (d) Evaluate the line integral $\oint_C \vec{v} \cdot d\ell$ where $\vec{v} = z^2 \hat{x} + x^2 \hat{y} + y^2 \hat{z}$ and C is the circle x = 2, $y^2 + z^2 = 16$. (5%)
- 6. We define Fourier transform as $F\{f(x)\} = \hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$. A Table of Fourier transform has been provided at the end of this question sheet.

(a) Evaluate the Fourier transform
$$F\{5xe^{-2|x|}\}$$
. (5%)

(b) Evaluate the inverse Fourier transform
$$F^{-1}\left\{\frac{1}{\omega^2+6\omega+13}\right\}$$
 (5%)

國立清華大學104學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 (0527) 甲組(工程組)

考試科目 (代碼): 工程數學 (2701)

- (c) An infinite beam resting on an elastic foundation and subjected to a load f(x) can be described by the differential equation $EIy^{(4)} + ky = f(x)$ where E, I, k are physical constants. The problem is solved using Fourier transform and Fourier convolution. The solution can be expressed as $y(x) = \int_{-\infty}^{+\infty} K(x \xi) f(\xi) d\xi$. Find the kernel K(x)=?
- 7. Suppose that a function $T(\rho, \varphi)$ on the spherical surface $\rho = a$ is maintained at a constant value T_0 , that the function T is <u>harmonic</u> throughout the regions $\rho > a$ and $\rho < a$, and that T tends to zero as $\rho \to \infty$. Find T at an arbitrary point <u>inside</u> the sphere $(\rho < a)$. What is T <u>outside</u> the sphere $(\rho > a)$? You are required to solve this problem as a PDE problem and to show details of your work, including the derivation of the relevant orthogonal set of eigenfunctions to this problem. (18%) [in spherical coordinates (ρ, φ, θ) , where φ is the "cone angle" measured from the z axis,

$$\nabla^2 T = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 \frac{\partial T}{\partial \rho}) + \frac{1}{\rho^2 \sin \varphi} \frac{\partial}{\partial \varphi} (\sin \varphi \frac{\partial T}{\partial \varphi}) + \frac{1}{\rho^2 \sin^2 \varphi} \frac{\partial^2 T}{\partial \theta^2}$$

8. Expand the function

$$f(z) = \frac{z^2 - 2z + 2}{z - 2}$$

in a Laurent series which converges in the given annular domain 1 < |z-1|. (12%)

國立清華大學104學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 (0527) 甲組(工程組) 考試科目(代碼):工程數學 (2701)

共_3_頁,第_3_頁 *請在【答案卷】作答

Table of Fourier Transforms

	f(x)	$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$
.	$\frac{1}{x^2+a^2} (a>0)$	$\frac{\pi}{a}e^{-a \omega }$
2.	$H(x)e^{-ax} (\operatorname{Re} a > 0)$	$\frac{1}{a+i\omega}$
3.	$H(-x)e^{ax} (\operatorname{Re} a > 0)$	$\frac{1}{a-i\omega}$
4.	$e^{-a x }$ $(a>0)$	$\frac{2a}{\omega^2 + a^2}$
5.	e^{-x^2}	$\sqrt{\pi}e^{-\omega^2/4}$
6.	$\frac{1}{2a\sqrt{\pi}} e^{-x^2/(2a)^2} (a > 0)$	$e^{-a^2\omega^2}$
7.	$\frac{1}{\sqrt{ x }}$	$\sqrt{\frac{2\pi}{ \omega }}$
8.	$e^{-a x /\sqrt{2}} \sin\left(\frac{a}{\sqrt{2}} x + \frac{\pi}{4}\right) (a > 0)$	$\frac{2a^3}{\omega^4 + a^4}$
9.	H(x+a)-H(x-a)	$\frac{2\sin\omega a}{\omega}$
10.	$\delta(x-a)$	$e^{-i\omega a}$
11.	f(ax+b) (a>0)	$\frac{1}{a}e^{ib\omega/a}\hat{f}\left(\frac{\omega}{a}\right)$
12.	$\frac{1}{a}e^{-ibx/a}f\left(\frac{x}{a}\right) (a > 0, b \text{ real})$	$\hat{f}(a\omega + b)$
13.	$f(ax)\cos cx$ (a > 0, creal)	$\frac{1}{2a} \left[\hat{f} \left(\frac{\omega - c}{a} \right) + \hat{f} \left(\frac{\omega + c}{a} \right) \right]$
14.	$f(ax)\sin cx$ $(a > 0, c real)$	$\frac{1}{2ai}\left[\hat{f}\left(\frac{\omega-c}{a}\right)-\hat{f}\left(\frac{\omega+c}{a}\right)\right]$
15.	f(x+c)+f(x-c) (creal)	$2\hat{f}(\omega)\cos\omega c$
16.	f(x+c)-f(x-c) (c real)	$2i\hat{f}(\omega)\sin\omega c$
17.	$x^n f(x) (n=1,2,\ldots)$	$i^n \frac{d^n}{d\omega^n} \hat{f}(\omega)$
18.	$\alpha f(x) + \beta g(x)$	$lpha\hat{f}(\omega)+eta\hat{g}(\omega)$
19.	$f^{(n)}(x)$	$(i\omega)^n \hat{f}(\omega)$
20.	$f(x) = \int_{-\infty}^{x} g(\xi) d\xi,$	$\hat{f}(\omega) = \frac{1}{i\omega}\hat{g}(\omega)$
	where $f(x) o 0$ as $x o \infty$	
21.	$(f * g)(x) = \int_{-\infty}^{\infty} f(x - \xi)g(\xi) d\xi$	$\hat{f}(\omega)\hat{g}(\omega)$