國立清華大學 103 學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 甲組

考試科目 (代碼): 2803 近代物理

共_2_頁,第_1_頁 *請在【答案卷、卡】作答

Useful constants: $c = 3.00 \times 10^8 \text{ m/s}$, $k_B = 1.38 \times 10^{-23} \text{ J/K}$, $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$, $e = 1.60 \times 10^{-19} \text{ C}$, $m_e = 9.11 \times 10^{-31} \text{ Kg}$, $\mu_B = 9.274 \times 10^{-24} \text{ J/T}$, Coulomb constant $k = 8.988 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2$.

- 1. (10%) A high speed K^0 meson is traveling at a speed of 0.9 c when it decays into a π^+ and a π^- meson. What are the greatest and the least speeds that the π^+ and π^- mesons may have. (the rest mass energy of K^0 is 498 MeV, and the rest mass energy of π^+ or π^- meson is 140 MeV).
- 2. (6%) What is the shortest wavelength of the X-rays generated by 80 KeV electrons hitting on a copper target of an X-ray generator.
- 3. (6%) For a Rutherford scattering experiment using a foil with atomic number 29, the counting rate (number of the scattered alpha particles per miniute) for a give detector position (scattering angle) is 120 counts per minute. What would be the counting rate if the atomic number is 79?
- 4. (14%) A beam of thermal neutrons with kinetic energy 0.025 eV scatters from a powder crystal with interatomic spacing 0.45 nm. What is the neutron wavelength? What is the angle between the incident beam and the scattered beam of the first-order Bragg peak? (neutron mass: $m_n = 1.675 \times 10^{-27} \text{ Kg}$; 1 nm = 10^{-9} m)
- 5. (14%) Derive the equation for the radius of the electron orbit and the energy state of a hydrogen atom according to the theory of Bohr's quantum model of the atom.
- 6. In a free space, I have two particles interacting between each other. The mass of these two particles are $2 m_0$ and $10 m_0$, respectively; m_0 is a unit at rest mass. What is the reduced mass of the lighter particle? (5%)
- 7. Which kind of potential well giving the separation between energy levels as $h\nu$? (5%) (note: $h\nu = \hbar\omega$)
- 8. What is the expectation value $\langle x \rangle$ of the position of a particle in a box L wide? _____(10%)

(continue to next page)

國立清華大學 103 學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 甲組

考試科目(代碼):2803 近代物理

共_2_頁,第_2_頁 *請在【答案卷、卡】作答

An eigenfunction of the operator	$\frac{d^2}{dx^2}$ is I	$p=e^{2x}$.	Find the corresponding
eigenvalue.	_(10%)		
		•	_
3		ydrogen-	like atoms for $n = 1$ is
	How much more likely is a 1s eleform the nucleus than at the distant Assume that the radial wavefunct	eigenvalue(10%) How much more likely is a 1s electron in a large from the nucleus than at the distance $r_0/2$?	How much more likely is a 1s electron in a hydrogen from the nucleus than at the distance $r_0/2$? Assume that the radial wavefunction R for hydrogen-

- 11. Answer the following questions:
 - (1) Please write down the electron configuration of a nitrogen (Z=7) atom. (2%)
 - (2) Please write down the electron configuration of a Co (Z=27) atom. (2%)
 - (3) Please write down the sequence of atomic volume of the following atoms (from the smaller to larger): Ne, Na, Rb, Cs. (2%)
 - (4) Please write down the sequence of ionization energy of electrons of the following atoms (from the smaller to larger): Ne, Na, Xe, Cs. (2%)
 - (5) The K_{α} X-ray is emitted in the transition from excited shell to ground shell. Please tell me which excited shell to which ground shell. Write down the names of the shells. (2%)

oran orang a company and a