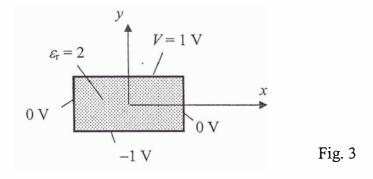


		國	立	清	華	大	學	命	題	紙		
		95 學年度_	工程與系	統科學	_系(所))	戊	_組碩士班/	、學考試			
	科目_	電磁學	科	目代碼	3602	共2_	頁第2	頁 *請在	試卷【名	答案卷】內作	答	
	 4. For a waveguide formed by two parallel plates (free space in between) of width a and spacing b as shown in Fig. 2, solve the wave equation of TM modes. (assume b << a, and the fields are uniform in x-direction): 											
	(a) show that the cutoff frequency (angular frequency) is given by (20%)										ó)	
		$\omega_m = c m \pi / b$, $m = 0, 1, 2 \dots$										
	$\omega_m = c m \pi / b , m = 0, 1, 2 \dots$											


(b) find the electric and magnetic fields distributions (in components form). Show that TM_0 mode exists, i.e., the transverse fields are non-vanishing for m = 0 (it is just the TEM mode).

5. An infinite long rectangle with a height and a width of a = 1 cm and b = 2 cm, respectively, is filled with a dielectric of relative permittivity $\varepsilon_r = 2$ and enclosed by perfect electric conductors which are held at different electrostatic potentials, as shown in Fig. 3 (cross sectional view). (20%)

(a) Find the potential distribution everywhere inside the rectangle.

(b) Find the charge density distribution everywhere, including both free and bound charges.

