九十三學年度 丁 3 斗 系 (所) ______ 組碩士班入學考試 科目 電 3 學 _____ 科號 4/02 共 3 頁第 1 頁 *請在試卷【答案卷】內作答 ## (請注意!! 答案之順序務必按題號順序) - Sketch a 2²⁰-bit memory chip organized as an array of 2¹⁰ rows X2¹⁰ columns. This illustration should include bit lines, word lines, sense amplifiers/drivers, row decoders, and column decoders. (10 pts) - 2. Is a CMOS inverter ratio or ratioless gate ? What are the advantages ? For the matching purpose in CMOS inverter, what is the relation among (W/L)p, (W/L)n, mobility μ_n , and μ_p ? (15 pts) - 3. Holes are being injected into a region of n-type silicon. In the steady state, the excess-hole concentration profile is shown in Fig.3. If N_D = 10^{16} /cm³, n_i = $1.5X10^{10}$ /cm³, Dp= 12 cm²/s, and W= 5 μ m, find the current density that will flow in the x direction. (10 pts) 4. In the Fig.4, vs is a small signal with zero average value. If β = 50, find R_{in} and gain vo/vs. (10 pts) Fig.4 九十三學年度 フラナ 系 (所) <u>ブ</u>組碩士班入學考試 科目 **で 子 学** 科號 4/02 共 3 頁第 2 頁 *請在試卷【答案卷】內作答 By using feedback analysis in Fig.5, find the voltage gain Vo/Vs, R_{in}, and R_{out} of the circuit for device with V_t= 2V and K_n'(W/L)= 0.5 mA/V².(15 pts) Fig.5 In Fig. 6, Q₁ and Q₂ have equal g_m and r_o. If the output resistance of I_{BIAS2} is r_o and the total capacitance at output node is C_L, find the voltage gain Vo/Vi and the dominant pole frequency ω_H. (16 pts) Fig.6 九十三學年度 エ 手斗 系 (所) ____ J __ 組碩士班入學考試 科目 ___ 全 子 写 ___ 科號 4/02 共 3 頁第 3 頁 *請在試卷【答案卷】內作答 7. The equivalent circuit of a quartz oscillator is shown in Fig.7. Why is the oscillation frequency ω_o very stable? And find ω_o . (10 pts) Fig.7 8. For the case of all devices with equal magnitude of early voltage V_A in Fig.8, find the voltage gain Vo/Vi in terms of K_n', (W/L)_n, I_{REF}, and V_A. Is the circuit affected by the body effect? And why? (14 pts) Fig.8