Nomenclature (解釋名詞): (20%, each 5%)

1. Auger electron

科目

- Ceronkov radiation
- thermal disadvantage factor
- spatially self-shielding

Multiple choices (單選題): (40%, each 4%)

The wavelengths of <u>I MeV</u> electron, neutron, and photon are given by λ_e, λ_n, and λ_γ, respectively. Which statement is correct?

(a) $\lambda_e = 0.124$ nm, (b) $\lambda_n = 0.00286$ nm, (c) $\lambda_y = 1.44$ nm, (d) none of above.

Note: Planck's constant $h = 6.6256 \times 10^{-34}$ joule-sec; amu = 1.6605×10^{-27} kg, eV = 1.6021×10^{-19} joule; $m_e = 0.000549$ amu; $m_n = 1.008665$ amu

- For a nucleus ZX^A to proceed positron decay, which statement is correct? Note: M and m denote the atomic and nuclear masses, respectively.
 (a) M_{Z,A} > M_{Z+1,A} + 2m_e, (b) M_{Z,A} > M_{Z-1,A}, (c) m_{Z,A} > m_{Z-1,A} + m_e, (d) none of above.
- Regarding to the <u>fission</u> cross section (σ_f) of ₉₂ U²³³ versus neutron energy (E), which figure is correct?

- 4. The average energy loss for an <u>isotropic</u> scattering of an incident neutron with a target nucleus (mass number = A) is given by ΔE = ½(1 α)E₀, where E₀ is the kinetic energy of the neutron before collision and α represents the collision parameter [(A-1)/(A+1)]². Now if the scattering is <u>forward peaking</u> (i.e., favors small-angle scattering), which statement is correct? Briefly explain why?
- From the moderator data gieven as below;

cross section (b)	Н	D	0
σ_s	49.4	4.7	4.2
σο	0.33	0.0005	0

The mass densities of H₂O and D₂O are 1.0 and 1.1 g/cm³, respectively. Compare the properties of H₂O and D₂O in slowing down 2 MeV neutrons to thermal energy, which statement is correct? Briefly explain why?

(a) H₂O has a smaller lethargy gain per elastic scattering collision, (b) H₂O has a smaller moderation power, (c) H₂O has a smaller moderating (effectiveness) ratio, (d) H₂O needs to make more elastic scattering collisions with neutrons.

九十三學年度 工程與系統科學 系(所) 丙 組碩士班入學考試

科目____核工原理___科號_4003_共_兩_頁第____頁 *請在試卷【答案卷】內作答

- 6. Regarding to the mass attenuation coefficient (μ/ρ) of 13Al²⁷ and 26Fe⁵⁸ for 1.5 MeV γ-rays, which statement is correct? Briefly explain why?
 - (a) $(\mu/\rho)_{Al} >> (\mu/\rho)_{Fe}$, (b) $(\mu/\rho)_{Al} \approx (\mu/\rho)_{Fe}$, (c) $(\mu/\rho)_{Al} << (\mu/\rho)_{Fe}$, (d) none of above.
- 7. Regarding specific ionization I_s, which statement is correct?
 - (a) same M, charge $\uparrow => I_s \downarrow$, (b) same E, mass $\uparrow => I_s \downarrow$, (c) same E, mass $\uparrow => I_s \uparrow$, (d) none of above.
- Regarding to thermal flux (φ_T) and 2200 meters-per-second flux (φ₀), which statement is correct? Briefly explain why?
 - (a) $\phi_T = N_0 v_{ave}$, (b) ϕ_T is a flux assuming all the thermal neutrons at 20°C, (c) ϕ_0 is a flux assuming all the thermal neutrons possess energies ranging from 0 to $5kT_n$, (d) none of above.
- Regarding to the four-factor formula for <u>heterogeneous</u> reactors, which statement is correct?
 Briefly explain why?
 - (a) $\eta_{\text{hetero}} > \eta_{\text{homo}}$, (b) $\varepsilon_{\text{hetero}} < \varepsilon_{\text{homo}}$, (c) $p_{\text{hetero}} = p_{\text{homo}}$, (d) $f_{\text{hetero}} < f_{\text{homo}}$.
- Regarding time-dependent reactors, which statement is correct? Note that k, ρ, and β
 denote multiplication factor, reactivity, and delayed-neutron fraction, respectively.
 - (a) if k = 1.002, $\rho = 20$ pcm, (b) $\beta = 0.065$ for U-235, (c) if k = 1.003, $\rho = 0.482$ \$, (d) none of above.

Calculations (計算與證明題): (40%, each 10%)

- The measured lifetimes (T = 1/λ) of 92U²³⁵ and 92U²³⁸ are 1.02×10⁹ years and 6.52×10⁹ years, respectively. Assume they were equally abundant when the uranium in the earth was originally formed. From the <u>natural uranium</u> normally found on the earth at the present time, estimate how much time has elapsed since the time of formation.
- Derive the <u>neutron spectrum</u> in the epi-thermal energy region is proportional to 1/E. Hint: You may assume that absorption is negligible in this case.
- 3. Derive the one-group critical (criticality) equation for a bare reactor.
- Given a two-group, bare, very large reactor containing the data listed below. Assume there is
 no up-scattering and all fission neutrons are born in the fast energy group. Determine the
 multiplication factor of the reactor.

Group	$v\Sigma_f$ (cm ^{-t})	Σ_f (cm ⁻¹)	Σ_a (cm ⁻¹)	D (cm)	$\Sigma_{s1\rightarrow 2}$ (cm ⁻¹)
fast (1)	0.008476	0.00332	0.01207	1.2627	0.02619
thermal (2)	0.18514	0.07537	0.121	0.3543	

where $\Sigma_{s1\to 2}$ denotes the macroscopic scattering cross section for scattering the neutrons from the fast group into the thermal group.