九十二學年度_工程與多為於科學系(所)で、切、丁、戊組碩士班研究生招生考試

3701、3902、4002、 科號 3802 共 - 頁第 - 頁 *請在試卷【答案卷】內作答 科目

Given that $y_1(x) = x$ is a solution of the differential equation

$$y'' - \frac{2x}{1+x^2}y' + \frac{2}{1+x^2}y = 0.$$

Find the second solution.

(15%)

Solve the following problem:

$$4y'' - 4y' + 17y(t) = 0.$$
 $y(0) = 2, y'(0) = 5.$ (10%)

Find the power series solutions about point x = 0 of the following equation:

$$x^2 y'' + x y' - (x^2 + 1/4) y(x) = 0.$$
 (15%)

- 4. Let the velocity of a fluid be described by $\mathbf{F} = 6xz \mathbf{i} + x^2y \mathbf{j} + yz \mathbf{k}$. Compute the rate at which fluid is leaving the unit cube. (15%)
- Prove that the eigenvalues of kA, for any scalar k, are k times those of matrix A. corresponding eigenspaces the same? Explain. (7%)

(b) Evaluate
$$\iint_{S} \mathbf{n} \cdot \nabla \times \overrightarrow{F} dA$$
,

where
$$\vec{F} = xz \vec{i} - yz^4 \vec{k}$$
, S: $x^2 + 4y^2 + z^2 = 4$, $x \ge 0, y \ge 0, z \ge 0$ (8%)

Find the steady-state temperature distribution $T(r, \theta)$ in a semicircular plate of radius 1 if

$$T(1,\theta) = u_0, \qquad 0 < \theta < \pi$$

$$T(r,\theta) = 0, \qquad T(r,\theta) = 0$$

$$T(r, 0) = 0$$
, $T(r, \pi) = u_0$, $0 < r < 1$

[in polar coordinates
$$(\mathbf{r}, \theta)$$
, $\nabla^2 T = \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \frac{\partial T}{\partial \mathbf{r}}) + \frac{1}{\mathbf{r}^2} \frac{\partial^2 T}{\partial \theta^2}$] (15%)

Evaluate the integral

$$\int_0^\infty \frac{dx}{1+x^\alpha}, \alpha > 1$$

(Hint: consider the contour shown in Fig. 1, z = x + i y)

$$y$$

$$2\pi \chi$$

$$R$$
(15%)

Fig. 1