控制原理

科號 3664 共 工 頁第 / 頁 *請在試卷【答案卷】內作答

1. Reduce the system shown below to a single equivalent transfer function $T(s) = E_0(s)/E_1(s)$. (10%)

Consider the follow second-order system:

$$H(s) = \omega_n^2 / (s^2 + 2\zeta \omega_n + \omega_n^2)$$

Show that the unit step response is

y(t) = 1-1/(1-
$$\zeta^2$$
)^{0.5} exp(- $\zeta \omega_n t$) sin($\omega_d t + \theta$)
where $\omega_d = \omega_n (1-\zeta^2)^{0.5}$ and $\theta = \cos^{-1} \zeta$ (20%)

Design a simplest controller for the system shown below such that the steady-state error
with a step input is zero, the damping ratio is unity, and the undamped natural frequency is
4 rad/s.

4. Show that when $0 \le \zeta \le 0.707$, the frequency response of a system with transfer function H(s), which is shown in problem 2, has a peak amplitude given by

$$1/[2\zeta(1-\zeta^2)^{0.5}].$$
 (20%)

- 5. Consider the transfer function $G(s) = K(s+1)^2/[s(s-1)^2]$.
 - a. If K=1, plot the Bode plot. (8%)
 - b. If K=1, plot the polar plot. (6%)
 - c. Plot the loot locus. (6%)
 - d. Find the range of K that will ensure stability in the unity feedback system. (3%)
 - e. Find the value of K that will cause oscillation and the frequency of oscillation.(2%)

6. The Bode plot of the plant is shown below. The design is to met (1) phase margin $\geq 60^{\circ}$ and (2) gain margin ≥ 10 dB. Discuss if the phase-lead or phase-lag controller can met these conditions. You must give your reasons. (15%)

