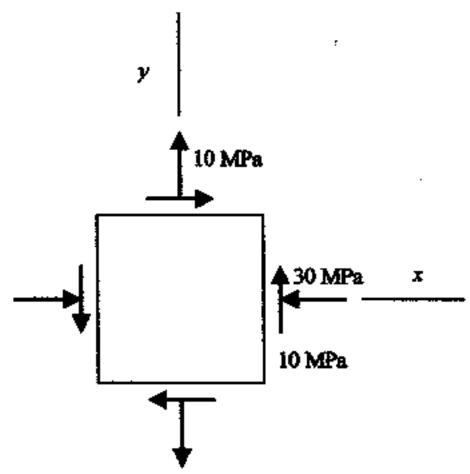
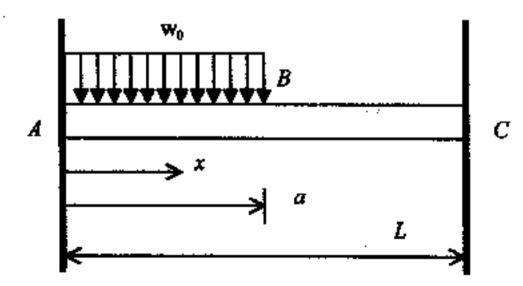

	八十九學年度	工程	與系統	彩与	ļ	系	크	¥	碩士班研究生招生考試
科目_	材料力學	_科號_	3603	_共_	Ξ		_	頁	*請在試卷【答案卷】內作答

1. For the bimetallic bar shown below, $E_1 = 30 \times 10^3$ ksi, L = 100 in., b = 2 in., and $h_1 = h_2 = 0.6$ in. (a) If the bimetallic bar undergoes axial deformation under the action of load P at $y_p = 0.4$ in., what is the value of the modulus of elasticity, E_2 , of material (2)? (b) Determine the total elongation of the bar for a load of P = 2 kips. (25%)



2. A torque T_A is applied to gear A of the two-shaft system, producing a rotation $\phi_A = 0.05$ rad. The shafts are made of steel (G = 80 GPa), and each has a diameter of d = 32 mm. The shafts are supported by frictionless bearings, and end D of shaft CD is restrained (\Box \Box). (a) Determine the angle of rotation of gear C and the angle of rotation at gear B. (b) Determine the internal torques in shafts (1) and (2). (c) Determine the maximum shear stress in the two-shaft system. (25%)


八十九學年度___工程與系統科學 系 己 組碩士班研究生招生考試 科目 材料力學 科號 3603 共 三 頁第 二 頁 "請在試卷【答案卷】內作答

- 3. For the plane-stress state of an element shown below, do the following:
 - (a) Construct a Mohr's circle of stress. (7%)
 - (b) Determine the principal stresses and show them on a properly oriented stress element. (10%)
 - (c) Determine the maximum shear stresses and the normal stress on the planes of maximum shear, and show these on a sketch of a properly oriented stress element. (8%)

八十九學年度<u>工程與系統科學</u>系<u>己</u>組碩士班研究生招生考試科目<u>材料力學</u>科號 3603 共 三 頁第 三 頁 *請在試卷【答案卷】內作答

4. The fixed-fixed beam is subjected to a uniformly distributed load of intensity w₀ over the interval AB (i.e., 0 ≤ x ≤ a). (a) Use the fourth-order integration method to determine the reactions at A and C and the deflection-curve expression v_a(x) (for 0 ≤ x ≤ a) and v_b(x) (for a ≤ x ≤ L). (b) Letting a = L/2, sketch the complete shear diagram, V(x), for this beam. (25%)

