1. Water is compressed from state (1) to state (5). Shown as in Fig. 1. Assume the specific volume of water v_t and its volume expansivity α_p are constant. Water in liquid phase is following the state equation P=AlnT, where A is constant, and the steam in vapor phase is following the state equation P(v-b)=RT, where b is constant. The heat capacity of water is constant; $C_{p(t)}$, and the heat capacity of steam is constant too; $C_{p(v)}$. Given the saturated liquid enthalpy at state(3); $h_{t,3}$, and the saturated vapor enthalpy at state (3'), $h_{t,3}$, P_1 , P_2 , P_3 , are the isobaric lines, $T_4=T_5$, $T_3=T_3$, Define volume expansivity:

$$\alpha_p = \frac{1}{v_f} \left(\frac{\partial v_f}{\partial T} \right)_p$$

- (a) Please evaluate enthalpy change $\Delta h_{12}(2\%)$ and $\Delta h_{22}(7\%)$ and entropy change $\Delta S_{12}(2\%)$ and $\Delta S_{22}(4\%)$ with function of $C_{P(2)}$ T_1 , T_2 , T_2 , P_1 , P_2 , α_p , ν_{f2} and Δ .
- (b) Evaluate the enthalpy change Δh_{33} and entropy change ΔS_{33} from state (3) to state (3') with function of h_{c2} , h_{g3} , and T_3 (5%)
- (c) Evaluate the entropy change $\Delta b_{3'4}$ and the entropy change $\Delta S_{3'4}$ from state (3') to state (4) with function of $C_{p(v)}$, T_3 and T_4 (6%)
- (d) Evaluate the enthalpy change Δh_{45} and the entropy change ΔS_{45} from state (4) to state (5) with function of R, b, P_2 and P_5 (4%)

八十九學年度 <u>エイキも名写記科学</u>系(所)<u>おけん</u> 2J組碩士班研究生招生考試 20. カザ 科號 320ン共 3 頁第 ン 頁 <u>*請在試卷【答案卷</u>】內作答

- A steam power plant operates on a cycle with pressure and temperatures as designed in following figure. The efficiency of the turbine is 86% and the efficiency of the pump is 80%. Determine
 - (a) The isentropic pump work W_{ps} (2%), The actual pump work W_{a} (2%)
 - (b) The enthaply of state 2 (2%)
 - (c) The temperature of state 2, T₂₅, if the pump working as the reversible and adiabatic (isentropically) process (2%)
 - (d) The actual temperature of state 2, T_2 (2%)
 - (e) The entropy of state 2, S₂ (2%)
 - (f) The quality of state 6, X_{68} (2%) and The enthalpy of state 6, h_{68} (2%), if the turbine working as the reversible and adiabatic (isentropically) process
 - (g) The actual turbine work W₁ (2%), The actual enthalpy of state 6, h₆ (2%)
 - (h) The actual quality of state 6, X_6 (2%), The actual entropy of state 6, S_6 (2%)
 - (i) The net work of cycle W_{net} (2%), The heat input of the boiler q_H (2%)
 - (j) The thermal efficiency of the cycle η (2%)

State	Т	P	$V_{\rm f}$	V _e	$U_{\mathbf{f}}$	U_{ϵ}	h _f	իլ	St	S _g
(Unit)	(°C)	(Mpa)	(m³/Kg)	(m³/Kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg,*K)	ļ - ·
Superheat	380	3.8		0.0741		2877.3		3158		6.7159
Superheat	400	4.0		0.07341		2919.6		3213.6		6.769
Seturated	40	7.38×10 ⁻³	0.00108	19.52	167.56	2430.1	167.57	2574.3	0.5725	8.257
Saturated	42	8.27×10 ⁻³	0.001	17.4	178	2433	178.01	2578.7	0.6057	8.2109
Saturated	46	10×10 ⁻³	0.001	14.67	191.82	2437.9	191.83	2584.7	0.6493	8.1502
Saturated	262	4.8	0.00128	0.04	1138.2	2597.86	1146.5	2795.3	2.9	5.987
Subcooled	40	5	0.601		166.95		171.97		0.5705	
Subcooled	60	5	0.00101		250.23		255.3		0.8285	

- Explain the followings, and also give two thermodynamic properties as the examples for each of the four cases.
 (a) State function (5%)
 - (b) Non-state function (path function) (5%)
- (c) Intensive properties (5%)
 (d) Extensive properties (5%)
- 4. Show that any flow of heat between two heat reservoir at temperature T_H and T_C where $T_H > T_C$, must be from the hotter to the cooler reservoir, (5%)
- Please draw the T-S diagram for the ideal Carnot Cycle (5%) and calculate the cycle efficiency if the cycle is operating between high temperature reservoir T_H and low temperature reservoir T_L (10%)