注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:聯合招生

考試科目(代碼):工程數學(9801)

一作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 作答中如有發現試題印刷不清,得舉手請監試人員處理,但不得要求解釋題意。
- 3. 考生限在答案卷上標記「**」**由此開始作答」區內作答,且不可書寫姓名、 准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或 黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記) 致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:聯合招生 (0598)

考試科目 (代碼):工程數學 (9801)

共_2_頁,第_1__頁 *請在【答案卷】作答

1. Solve the differential equations and provide general solutions of y(x).

(a)
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = x(\ln x)$$
 (5%)

(b)
$$\frac{dy}{dx} = \frac{-6x^2y}{4y + 8x^3}$$
, $y(1)=1$ (5%)

(c)
$$\frac{dy}{dx} = 2y - 6xy^2$$
 (5%)

2. Use the Laplace transform to solve the problem

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = f(t), \text{ where } f(t) = \begin{cases} 0, & 0 \le t < 1 \\ 2, & t \ge 1 \end{cases},$$

$$x(0) = 1, \text{ and } x'(0) = -1.$$
You may express $f(t)$ in terms of a unit step function. (10%)

3. Find the series solution of the following differential equation about x = 0.

$$2x^{2}\frac{d^{2}y}{dx^{2}} + 5x\frac{dy}{dx} - (x^{2} + 2)y = 0 . (10\%)$$

You have to express the solution in the form of $y(x) = C_1y_1(x) + C_2y_2(x)$. To save time, you can only show the first three terms of $y_1(x)$ and $y_2(x)$.

4. Consider the matrix

$$M = \begin{bmatrix} -3 & 2 & 2 \\ -11 & 5 & 7 \\ -1 & 2 & 0 \end{bmatrix}.$$

- (a) Find the determinant of A (3%) and obtain the inverse matrix A^{-1} (4%)
- (b) Estimate the eigenvalues (4%) and eigenvectors of A (4%)
- 5. (a) Use Stokes' theorem to evaluate $\oint_C \mathbf{v} \cdot d\mathbf{R}$ where $\mathbf{v} = x^3 z \hat{\mathbf{k}}$ and C is a loop starting from (1, 1, 0), to (-1, 1, 0), to (0, 0, 1) and going back (1, 1, 0). (5%)
 - (b) Use divergence theorem to evaluate $\oint_S \cdot \mathbf{v} \cdot \hat{\mathbf{n}} dA$, where $\mathbf{v} = yz^2 \hat{\mathbf{k}}$ and S is the surface of a pentahedron with vertices at (0, 0, 0), (2, 0, 0), (0, 0, 3), (2, 0, 3), (0, 4, 3), (2, 4, 3).

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:聯合招生 (0598)

考試科目 (代碼): 工程數學 (9801)

共_2_頁,第_2__頁 *請在【答案卷】作答

6. Use the method of separation of variables to solve the diffusion problem

$$\alpha^2 u_{xx} - u_t = 0$$
 $(\alpha \neq 0, \ 0 < x < L, \ 0 < t < \infty)$

under the boundary condition:

$$u(0,t) = 5$$
, $u_x(L,t) = 3$ $(0 < t < \infty)$,

$$u(x,0) = 3x + 10\sin(\frac{3\pi}{L}x)\cos(\frac{2\pi}{L}x) + 5 \quad (0 < x < L)$$
 (10%)

7. Use Fourier transform to solve the heat conduction problem on an infinite rod:

$$9u_{xx} = u_t \quad (-\infty < x < \infty, \ 0 < t < \infty)$$

with $u(x,0) = 5\delta(x-10)$, $-\infty < x < \infty$ [$\delta(x)$ is the Dirac's delta function]

(10%)

8. Find the solution for the Dirichlet problem on a circular disk:

$$\nabla^2 u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = 0 \ (0 \le r < b), \ u(b,\theta) = \begin{cases} 10, & 0 \le \theta < \pi \\ 0, & \pi \le \theta < 2\pi \end{cases}$$

Here we assume that $u(r, \theta)$ is bounded at r = 0 and $u(r, \theta) = u(r, \theta + 2\pi)$.

(10%)

9. (a) Evaluate the integral $\oint_C \frac{z}{(z^2+i)^2} dz$ where C is the counterclockwise circle

$$|z|=5.$$

(b) Find the Taylor or Laurent expansions of $f(z) = \frac{1}{(z+i)(z-2i)}$ about z=0 in

the circle |z| < 1 and in the annulus $2 < |z| < \infty$, respectively. (5%)