國立清華大學 107 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0529) 考試科目(代碼):熱力學(2902)

共_3_頁,第__頁 *請在【答案卷】作答

- 1. Explain
 - (a) What is the closed system (2%)
 - (b) What is the isolated system (2%)
 - (c) What is the isothermal process (2%)
 - (d) What is isochoric process (2%)
 - (e) What is the adiabatic process (2%)
 - (f) What is the thermal equilibrium (2%)
 - (g) What is the mechanical equilibrium (2%)
 - (h) Giving one example of the Intensive properties (1%), one example of the Extensive properties (1%), For which property do you think can be directly measured from the instrument (2%)
 - (i) In state principle for simple system, how many independent properties can fix the state of a simple system (2%)
- 2. (a) The differential of pressure obtained from a certain equation of state is given as the following. Write down the equation of state. (5%)

 $dP = (\frac{R}{V-b^2} - \frac{a}{V^3})dT + [\frac{-RT}{(V-b^2)^2} + \frac{3aT}{V^4}]dV$

(b) According to the state of equation from problem (a), please derives the internal energy change du with function of temperature \cdot specific volume \cdot pressure etc. (10%), and write down ΔU from state 1 to state 2 with function of P₁, V₁, T₁, P₂, V₂, T₂ and C_v, assume C_v is constant (5%).

- (a) What is isentropic process (2%) and gives the requirement for the isentropic (2%)
 - (b) Give at least two reasons which causes the Irreversible processes (2%)
 - (c) Which thermal property is constant in Throtting process (2%) and in a two-phase mixture (Sat. Vap. + Sat. Liquid), which thermal property can be measured through Throtting process (2%) describe how? (2%)
 - (d) What is the Clausius Inequality (2%)
 - (e) What is the Clausius statement of the second law (2%)
 - (f) Write down the Thermal Efficiency of the Carnot engine, η_{th} , in terms of (T_c, T_H) (2%)
 - (g) For an ideal gas, define the constant volume specific heat (C_v) and constant pressure specific heat (C_p). What is the relationship between these two specific heats? (2%)

國立清華大學 107 學年度碩士班考試入學試題 系所班組別:工程與系統科學系碩士班 乙組(0529) 考試科目(代碼):熱力學 (2902)

共_3_頁,第之_頁 *請在【答案卷】作答 4. As in Fig.1, state 1 to state 2 is isobaric process, state 2 to state 3 is isothermal process, state 2 to state 4 is isochoric process, giving following properties of the liquid and the specific heat capacity C_(f) (KJ/Kg,K), and all those properties can be assumed contsnt.

Volume expansivity (1/K): $\alpha_p = \frac{1}{V_{(f)}} (\frac{\partial V_{(f)}}{\partial T})_p$

Isothermal compressibility (1/bar): $\beta_T = -\frac{1}{V_{(f)}} (\frac{\partial V_{(f)}}{\partial P})_T$

Isothermal bulk modulus (bar) : $B_T = -V_{(f)} (\frac{\partial P}{\partial V_{(f)}})_T$

Adiabatic compressibility (1/bar): $\beta_s = -\frac{1}{V_{(f)}} (\frac{\partial V_{(f)}}{\partial P})_s$

Adiabatic bulk modulus (bar): $B_s = -V_{(f)}(\frac{\partial P}{\partial V_{(f)}})_s$

- (a) Please drive a general open form solution (integral sign is allowable) of the entropy change from state 1 to state 3 by integral of dP and with function of C_(f), T₂, T₁, V_(f) and α_p, β_T, B_T, β_s, B_s etc. (5%)
- (b) Please derive the value of $\left(\frac{\partial P}{\partial V_{(f)}}\right)_T$ with function of α_p , β_T , B_T , β_s , B_s , etc. (5%)
- (c) Please drive general open form solution (integral sign is allowable) of the entropy change from state 1 to state 3 by integral of dV and with function of C_(f), T₂, T₁, V_{(f),1}, V_{(f),2}, V_{(f),3} and α_p, β_T, B_T, β_s, B_s etc. (5%)
- (d) According to answer of (a) and (c), please give the close form solution of $\int V_{(f)} dP$ with function of C_(f), T₂, T₁, $V_{(f),1}$, $V_{(f),2}$, $V_{(f),3}$ and α_p , β_T , B_T , β_s , B_s etc. (5%)

國立清華大學 107 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0529)

考試科目 (代碼):熱力學 (2902)

共_3__頁,第_3__頁 *請在【答案卷】作答

- 5. A steam power plant operates on a cycle with pressure and temperatures as designed in following figure. The efficiency of the turbine is 86% and the efficiency of the pump is 80%. Assume there is no addition friction pressure drop between condenser, Determine
 - (a) The quality of state 6, $X_{6S}(1\%)$ and The enthalpy of state 6, h_{6S} in KJ/Kg (1%), if the turbine working as the reversible and adiabatic (isentropical) process
 - (b) The actual turbine work W_{act,t} in KJ/Kg (1%), and isentropic turbine work W_{s,t} in KJ/Kg (1%).
 - (c) The actual quality of state 6, X_6 (1%). The actual enthalpy of state 6, h_6 (2%). The actual entropy of state 6, S_6 (1%).
 - (d) Pressure at stage 1, P_1 in MPa (1%).
 - (e) The isentropic pump work $W_{S,P}$ in KJ/Kg (1%) and the actual pump work $W_{act,p}$ in KJ/Kg (1%), enthalpy of state 2, h_2 in (KJ/Kg) (1%) and the actual temperature of state 2, T_2 in °C (2%) and actual temperature of state 1 T_1 (1%).
 - (f) The net work of cycle W_{net} in KJ/Kg (2%), the heat input of the boiler Q_H in KJ/Kg (2%)
 - (g) The thermal efficiency of the cycle η_{th} (1%)

3