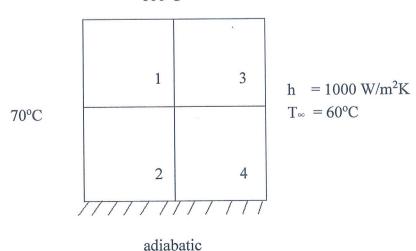
國立清華大學 106 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0527)

考試科目(代碼): 熱傳學 (2704)


- 1. (a) Please describe the Fourier's law of heat conduction and Newton's law of cooling, respectively. (5 %)
 - (b) Please describe the lumped capacitance model and the criterion for its validity. (5%)
 - (c) What is the criterion for an internal flow in a circular tube to become turbulent ?(5 %)
 - (d) Show that, for an ideal gas, the volumetric thermal expansion coefficient (β) at a given temperature (T) is equal to 1/T. (5 %)

Hint:β is defined as:

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{P}$$

Where ρ is the density and p is the pressure.

- 2. A plane wall is a composite of two materials, A and B. The wall of material A has uniform heat generation of g, thermal conductivity of k_a , thickness of L_a . The wall of material B has no heat generation and its thermal conductivity is k_b and thickness is L_b . The inner surface of material A is adiabatic, while the outer surface of material B is cooled by a fluid at T_o with a heat transfer coefficient h. Obtain the temperature distribution in the material A and determine its maximum temperature. (20%)
- 3. Consider two-dimensional, steady-state conduction in a square cross section with prescribed boundary conditions as shown, using a finite difference method based on the conservation of energy to determine the temperatures at nodes 1, 2, 3, and 4.(20%)

國立清華大學 106 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 乙組(0527)

考試科目 (代碼): 熱傳學 (2704)

- 4. Water at 20° C enters a circular channel of diameter 1cm with a mass flow rate of 0.1 kg/s. The tube is uniformly heated with a heat flux of 10^4 W/m 2 . The tube length is such that the water temperature at the exit is 60° C. Determine
 - (a) the length of the tube (10%)
 - (b) the maximum channel surface temperature (10%)

The water properties at 40° C are:

 $\rho = 992 \text{ kg/m}^3$; Cp=4.179×10³ J/kgK

 $k_f = 0.631 \text{W/mK}$; $\mu = 6.539 \times 10^{-4} \text{kg/ms}$.

Hint: $Nu_D = 4.36$ if the flow is laminar $Nu_D = 0.023 \text{Re}_D^{0.8} \text{Pr}^{0.4}$ if the flow is turbulent

- 5. A horizontal, high pressure steam pipe of 10 cm outside diameter passes through a large room whose wall and air temperatures are 30°C. The pipe with thermal insulation has an outside surface temperature of 124°C and an emissivity of $\varepsilon = 0.90$. Estimate the heat loss due to natural convection of air and thermal radiation per unit length. (20%)
 - Hint: (1)The Stefan-Boltzman constant is 5.67×10⁻⁸ W/m²K⁴
 - (2) You may use the Churchill and Chu's correlation to evaluate the heat transfer coefficient due to natural convection from a long horizontal cylinder:

$$\overline{Nu}_D = \left\{ 0.60 + \frac{0.387 \, Ra_D^{1/6}}{\left[1 + (0.559/Pr)^{9/16}\right]^{8/27}} \right\}^2 \qquad Ra_D \le 10^{12}$$

The air properties at $T_f = 350$ K are given as: $k_f = 0.030$ W/mK, $v_f = 20.9 \times 10^{-6} \text{m}^2/\text{s}$, $\alpha_f = 29.9 \times 10^{-6} \text{m}^2/\text{s}$