系所班組別:工程與系統科學系 乙組(0525)

考試科目 (代碼): 熱力學 (2502)

1. (a) Giving a compressibility factor chart, if you are asking to study the ideal gas behavior, please select one of the gases from the following figure 1. (2%)

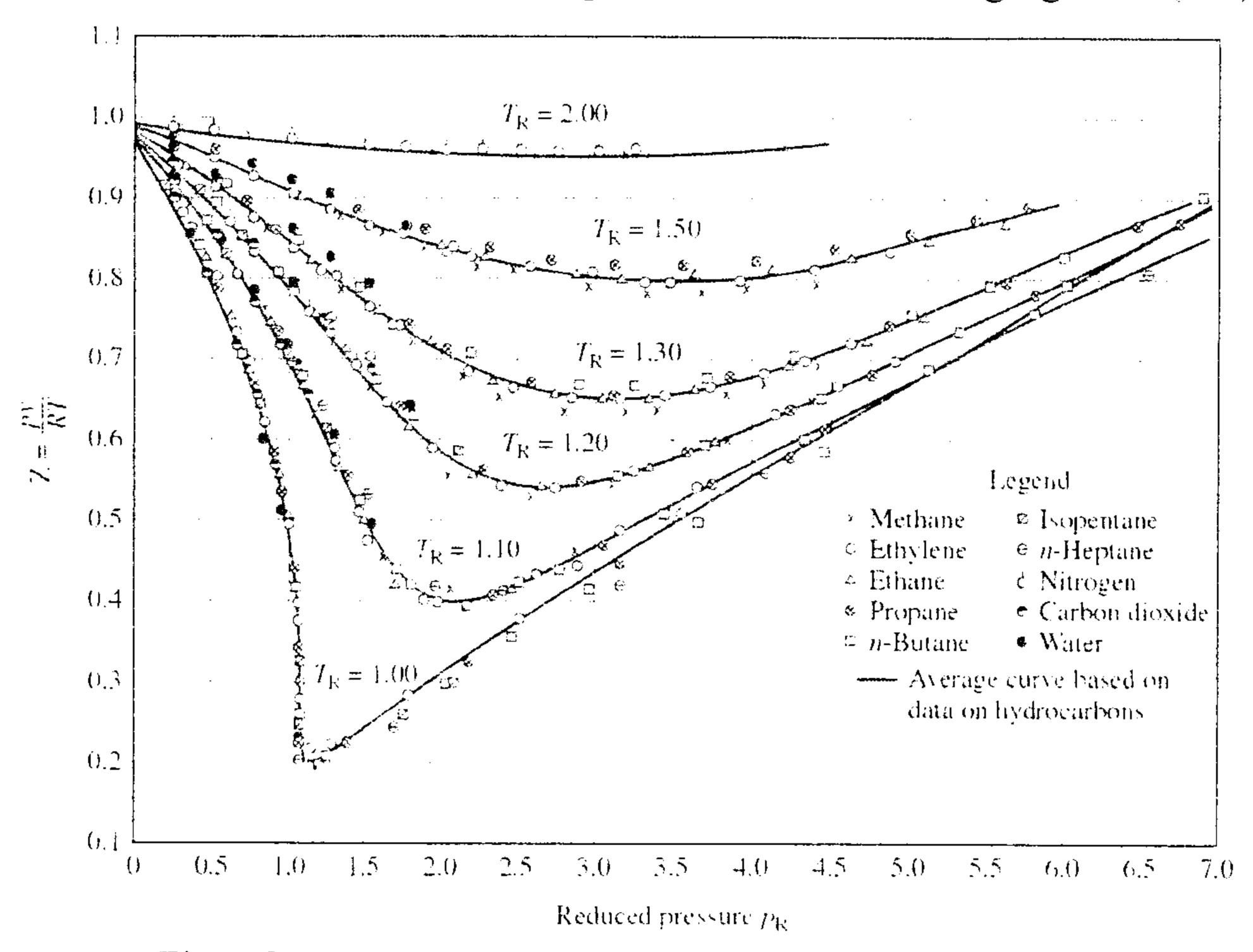


Fig. 1 Compressibility factor chart for different gas

- (b) Select the right answer for turbine (I) W>0; $P_e < P_i$ (II) W<0; $P_e < P_i$ (III) W>0; $P_e > P_i$ (IV) W<0; $P_e > P_i$ (2%)
- (c) Select the right answer for Compressor (I) W>0; $P_e < P_i(II) W < 0$; $P_e < P_i(III) W > 0$; $P_e > P_i(IV) W < 0$; $P_e > P_i(2\%)$
- (d) Select the right answer for pump (I) W>0; $P_e < P_i$ (II) W<0; $P_e < P_i$ (III) W>0; $P_e > P_i$ (IV) W<0; $P_e > P_i$ (2%)
- (e) Is pump working for liquid or gas? (1%) how about the compressor? (1%)
- (f) Giving the definition of Nozzle from the cross section area (1%) and exit velocity view (1%), and what is the definition of Diffuser from the cross section area (1%) and exit velocity view (1%)
- (g) When throttling process happens, which thermal properties can be assumed to be equal (kinetic energy and potential energy are neglected) (2%)
 - (I) U (II) H (III) S (IV) T (V) P (VI) specific volume
- (h) For reversible heat engine, $\oint (\frac{\delta Q}{T})_{res}$ (=0, >0, <0)? (2%) and how about $\oint \delta Q_{res}$ (\geq 0, or \leq 0) (2%)

系所班組別:工科與系統科學系 乙組

考試科目(代碼):熱力學(2502)

共__4_頁,第_2_頁 *請在【答案卷】作答

- 2. (a) What is isentropic process (1%) and gives the requirement for the isentropic (2%)
 - (b) What is the Clausius statement of the second law (2%)
 - (c) What is the Kelvin-Planck statement of the second law (2%)
 - (d) Write down *Clausius* Inequality equation (2%)
 - (e) Explain what is the dew point? (1%)
 - (f) Giving following figures 2(a) and 2(b), Please answer which one is Heat engine (1%) and which one is Refrigerator (1%)
 - (g) The relation between $|Q_H|$, $|Q_C|$ and $|W_{cycle}|$ in Fig. 2(a) (2%) and Fig. 2(b) (2%)
 - (h) Which one is the schematic diagram of heat pump, Fig. 2(a) or Fig. 2(b) (1%)
 - (i) Given the C.O.P (β) in terms of $|Q_H|$ or $|Q_C|$ and $|W_{cycle}|$ from the Refrigerator (1%), C.O.P (γ) in terms of $|Q_H|$ or $|Q_C|$ and $|W_{cycle}|$ from the Heat pump (1%)
 - (j) If heat engine is Carnot engine, what is the cycle efficiency in terms of T_H and $T_C(1\%)$

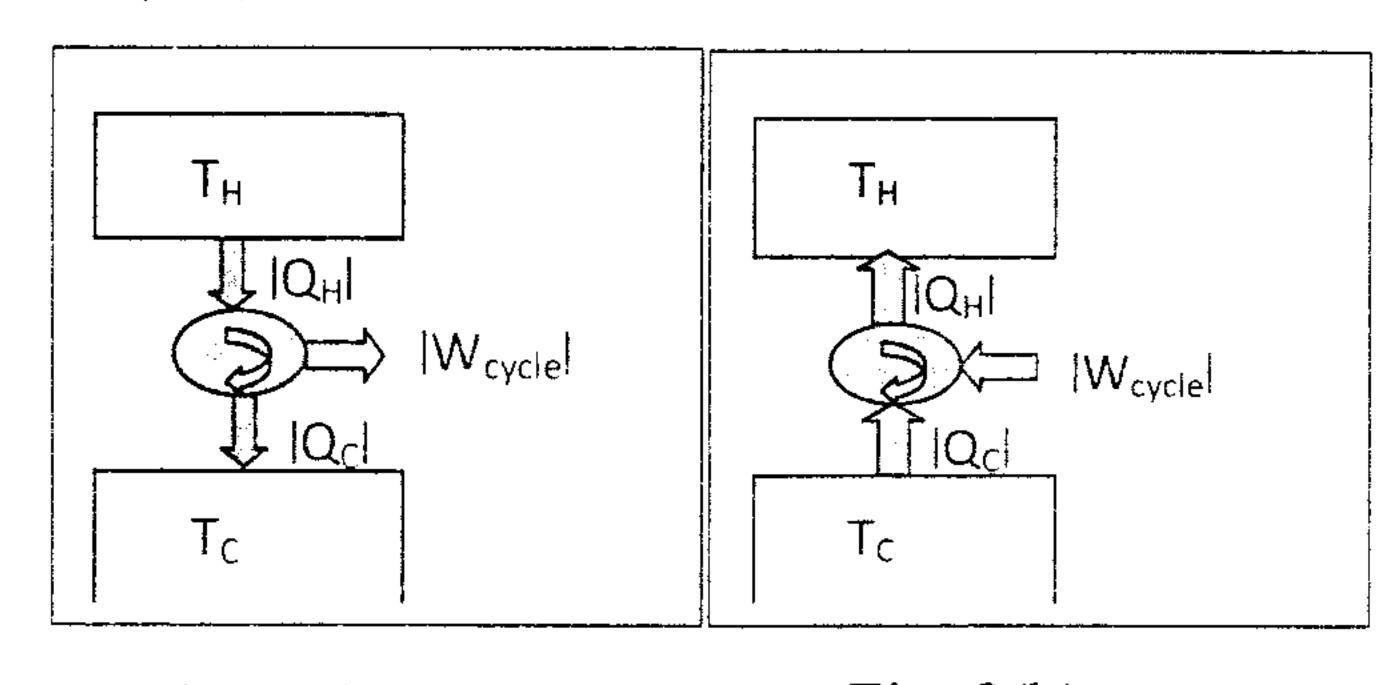


Fig. 2(a) Fig. 2(b)

3. (a) The differential of pressure obtained from a certain equation of state is given as the following. Write down the equation of state. (10%)

$$dp = (\frac{R}{V - b} - \frac{a}{V^3})dT + [\frac{-RT}{(V - b)^2} + \frac{3aT}{V^4}]dV$$

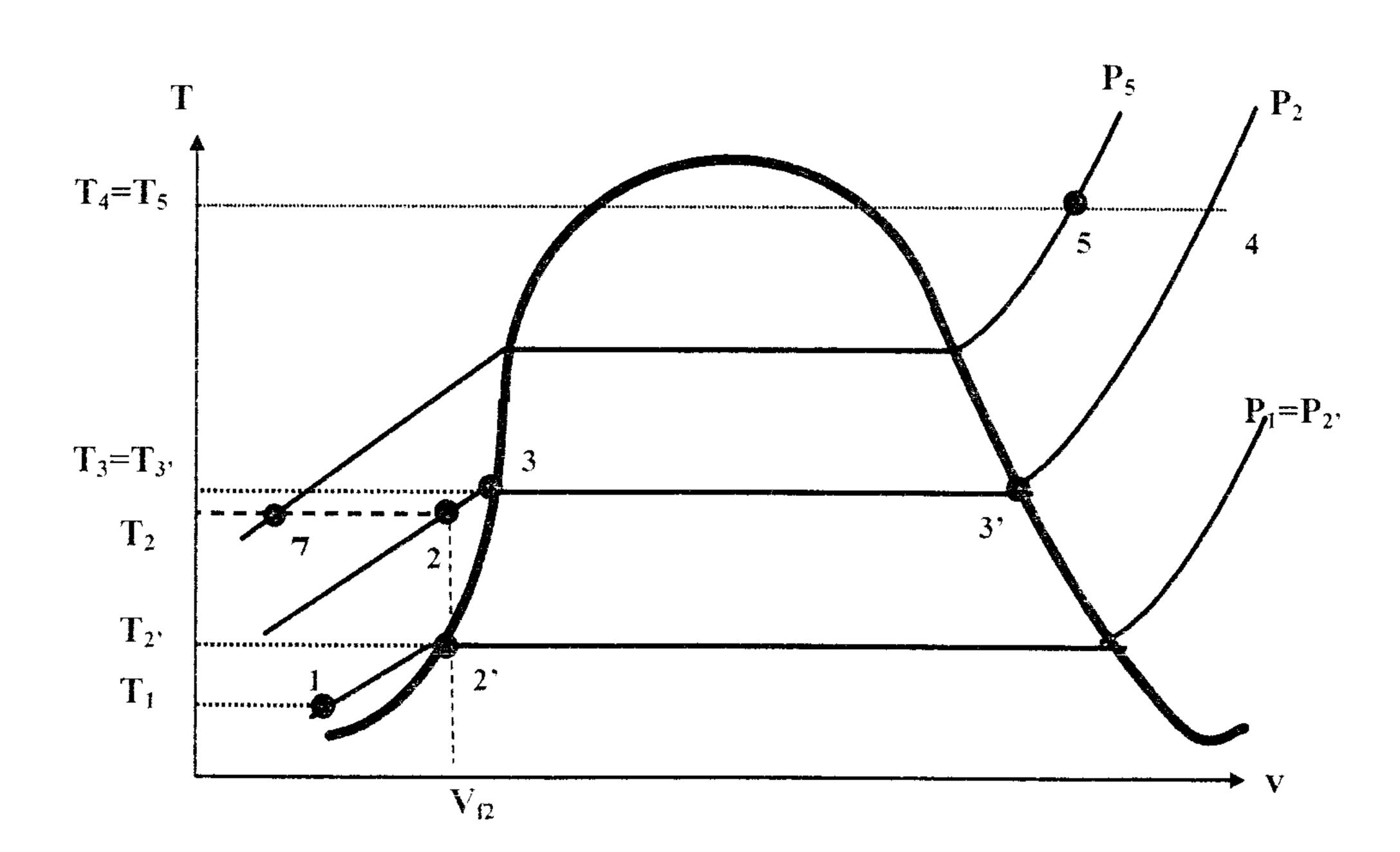
(b) According to the state of equation from problem (1), please prove internal energy change du is temperature function only. (10%)

系所班組別:工科與系統科學系 乙組

考試科目(代碼):熱力學(2502)

- 4. A power cycle operating between two reservoirs receive energy Q_H by heat transfer from a hot reservoir at T_H =2000K and rejects energy Q_C by heat transfer to a cold reservoir at T_C =400K. For each of the following cases determine whether the cycle operates reversibly, irreversibly, or is impossible:
 - (a) $Q_H=1000KJ$, $Q_C=200KJ$ (4%)
 - (b) $Q_H=1100KJ$, $W_{cycle}=900KJ$ (4%)
 - (c) $W_{\text{cycle}}=1400\text{KJ}$, $Q_C=600\text{KJ}$ (4%)
 - (d) $\eta_{th} = 85\%$ (4%)
 - (e) $\eta_{th} = 50\%$ (4%)
- 5. Water is compressed from state (1) to state (5). Show as in following figure. Assume the specific volume of water v_f and its volume expansivity α_p are constant. Water in liquid phase is following the state equation P=AlnT at constant volume process, where A is constant, and the steam in vapor phase is following the state equation: P(V b) = RT, where b is constant, V is the volume of the fluid. The specific heat of water $C_{(f)}$ is constant, the heat capacity of steam at constant pressure $C_{p(v)}$ and heat capacity at constant volume $C_{v(v)}$ are constant too; Given the saturated liquid enthalpy $h_{f,3}$ at state (3), and the saturated vapor enthalpy $h_{g,3}$ at state (3'), P_1 , P_2 , P_5 , are the isobaric lines, $T_4 = T_5$, $T_3 = T_3$, Define:

Volume expansivity is constant: $\alpha_p = \frac{1}{V_f} \left(\frac{\partial V_f}{\partial T} \right)_p$,


Isothermal compressibility: $\beta_{\tau} = -\frac{1}{V} (\frac{\partial V}{\partial P})_{\tau}$

- (a) Please evaluate and deduce enthalpy change $\Delta h_{12'}$ as function of $C_{(f)}$ T_1 , $T_{2'}$ (1%)
- (b) Evaluate enthalpy change $\Delta h_{2'2}(3\%)$ as function of $C_{(f)}$, T_2 , T_2 , P_2 , P_2 , α_p , V_{f2} and A, where V_{f2} represent the volume of water at state 2.
- (c) Evaluate the internal energy change $\Delta u_{2'2}$ (1%) from state 2' to state 2 with function of $C_{(f)}$, $(T_{2'}, T_2)$
- (d) Try to derive the entropy change $\Delta S_{2'2}$ from (T, V) and evaluate $\Delta S_{2'2}$ as function of $C_{(f)}$, T_2 , $T_{2'}(2\%)$.
- (e) Try to derive the entropy change $\Delta S_{2'2}$ from (T, P) and evaluate $\Delta S_{2'2}$ as function of $C_{(f)}$, T_2 , $T_{2'}$, α_p , V_{f2} . $P_{2'}$ and P_2 (2%).
- (f) Compare solution of (d) and (e), why makes these two answers are different, explain (2%)

系所班組別:工科與系統科學系 乙組

考試科目 (代碼): 熱力學 (2502)

- (g) Evaluate the enthalpy change $\Delta h_{33'}(1\%)$ and entropy change $\Delta S_{33'}(1\%)$ from state (3) to state (3') with function of $h_{f,3}$, $h_{g,3}$, and T_3
- (h) Evaluate the enthalpy change $\Delta h_{3'4}$ from state (3') to state (4) as function of $C_{p(v)}$, $T_{3'}$ and $T_{4.}$ (1%)
- (i) the entropy change $\Delta S_{3'4}$ from state (3') to state (4) as function of $C_{v(v)}$, $T_{3'}$, T_{4} , $V_{3'}$, b, R and V_{4} . (2%)
- (j) Evaluate the enthalpy change and the entropy change Δh_{45} (2%) and ΔS_{45} (2%) from state (4) to state (5) with function of R, b, P₄ and P₅.

