## 國立清華大學 103 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)(0598)

考試科目 (代碼):電磁學 (9803)

1. (10%) Derive the "equation of continuity" in differential form.

## 2. (20%)

A voltage V is applied across a parallel-plate capacitor of area S as shown in following figure. The space between the conducting plates is filled with two different lossy dielectrics of thickness  $d_1$  and  $d_2$ , permittivties  $\epsilon_1$  and  $\epsilon_2$ , and conductivities  $\sigma_1$  and  $\sigma_2$ , respectively.

- (a). Determine the current density J ( $J_1 = J_2 = J$ ) between the plates. (4%)
- (b). Determine the electrical field intensities ( $E_1 \& E_2$ ) in both dielectrics. (8%)
- (c). Determine the surface charge densities (C/m<sup>2</sup>)  $\rho_1$  &  $\rho_2$  on the two plates, and at the interface  $\rho_s$ . (8%)



3. (10%) Find the energy required to assemble a uniform sphere of total charge Q and radius a as shown in following figure.



## 國立清華大學 103 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)(0598)

考試科目(代碼):電磁學(9803)

4. (10%) Assume that N turns of wire are tightly wound on a toroidal frame of a rectangular cross section with dimensions as shown in following figure. Then, assuming the permeability of the medium to be  $\mu_0$ , find the **self-inductance** L of the toroidal coil.



5. (20%)

(a). Electromagnetic waves carry with them electromagnetic power.

Derive the Poynting's theorem. 
$$-\oint_{S} \vec{P} \cdot d\vec{S} = \frac{\partial}{\partial t} \int_{V} (w_{e} + w_{m}) dv + \int_{V} p_{\sigma} dv \quad (10\%)$$

- (b). Find the Poyting vector on the surface of a long straight conducting wire (of radius b and conductivity  $\sigma$ ) that carries a direct current I, as shown in following figures. (5%)
- (c). From (b), verify Poynting's theorem. (5%)



## 國立清華大學 103 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)(0598)

考試科目(代碼):電磁學(9803)

- 6. (10%) Derive the source free homogeneous vector wave equations of  $\vec{E}$  and  $\vec{H}$ , respectively.
- 7. (20%) Consider the situation in following figure, where the incident wave travels in the +z direction and the boundary surface is the plane z=0. The incident electric and magnetic field intensity phasors are

$$\begin{split} \vec{E}_i(z) &= \hat{a}_x E_{i0} e^{-j\beta_1 z} \\ \vec{H}_i(z) &= \hat{a}_y \frac{E_{i0}}{\eta_1} e^{-j\beta_1 z} \end{split}$$

- (a). Determine the reflected wave  $\vec{E}_r$  and  $\vec{H}_r$ . (5%)
- (b). Determine the transmitted wave  $\vec{E}_i$  and  $\vec{H}_i$ . (5%)
- (c). Determine the reflection coefficient  $\Gamma$ . (5%)
- (d). Determine the transmission coefficient  $\tau$ . (5%)

