國立清華大學 102 學年度碩士班考試入學試題聯合招生(工科內組、先進光源工科組)

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目 (代碼):電磁學 (9803)

共_3_頁,第_1_頁 *請在【答案卷、卡】作答

- 1. (20%). A positive point charge Q is at the center of a spherical dielectric shell of an inner radius R_i and an outer radius R_0 of following figure. The dielectric constant of the shell is \mathcal{E}_r . Determine all \bar{E} , V, \bar{D} and \bar{P} as functions of the radial distance R.
- (A). $R > R_o$

(5%)

(B). $R_i \le R \le R_o$

(10%)

(C). $R < R_i$

(5%)

- 2. (10%) Answer the following questions and justify your answers. Suppose that in Coulomb's law the strength of the electrical field is inverse-r³ law proportion to distance ($E \propto \frac{1}{r^3}$).
- (A). Is the field still conservative?

(5%)

(B). Is Gauss's law still valid?

(5%)

- 3. (10%). According to following figures
- (A). Draw the electric field lines of an electric dipole.

(5%)

(B). Draw the magnetic flux lines of a magnetic dipole.

(5%)

(+)

(-

X

(A) Electric dipole

(B) Magnetic dipole

國立清華大學 101 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目 (代碼):電磁學 (9803)

4. (20%) A narrow-band signal propagates in a lossy dielectric medium which has a loss tangent 0.2 at 550 (kHz), the carrier frequency of the signal. The dielectric constant of the medium is 2.5, and $\mu = \mu_0$.

$$c = 3 \times 10^8 \text{ (m/s)}, \ \varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ (F/m)}, \text{ and } \mu = \mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}$$

- (A). Determine α (attenuation constant) and β (phase constant). (10%)
- (B). Determine the phase velocity u_p and the group velocity u_g . (10%)
- 5. (15%) The electrical field intensity of a linearly polarized uniform plane wave propagation in the +z-direction in seawater is

$$\vec{E} = \hat{a}_x 100 \cos(10^7 \pi \cdot t)$$
 (V/m) at z = 0.

The constitutive parameters of seawater are $\varepsilon_r = 72$, $\mu_r = 1$ and $\sigma = 4$ (S/m).

$$c = 3 \times 10^8 \text{ (m/s)}, \ \varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ (F/m)}, \text{ and } \ \mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}$$

- (A). Show the seawater can be approximated as "good conductor". (5%)
- (B). Determine the skin depth δ .

(5%)

(C). Determine the phase velocity u_p . (5%)

國立清華大學 101 學年度碩士班考試入學試題

系所班組別:工程與系統科學系碩士班 丙組 先進光學科技碩士學位學程 工程與系統科學組

考試科目 (代碼):電磁學 (9803)

6. (10%) An a-c voltage source of amplitude V_0 and angular frequency ω , $v_c = V_0 \times \sin \omega t$, is connected across a parallel-plate capacitor C_1 in following figure.

- (A). Verify that the displacement current (i_c) in the capacitor is the same as the conduction current in the wires. (5%)
- (B). Determine the magnetic field intensity at a distance \mathbf{r} from the wire. (5%)

7. (15%) For a rectangular waveguide in following figure, with its rectangular cross section of sides $\bf a$ and $\bf b$. The enclosed dielectric medium is assumed to have constitutive parameters $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$. For TM waves, $H_z=0$ and E_z can be expressed as

$$E_z(x, y, z) = E_z^0(x, y) \cdot e^{-\gamma z}$$

- (A). Determine the $E_z^0(x, y)$ (10%)
- (B). Determine the TM_{mn} mode cutoff frequency $(f_c)_{mn}$. (5%)

