國立清華大學 102 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目(代碼):9801工程數學

1. (a) Consider $\underline{y}' = \underline{\underline{A}}\underline{y} + \underline{g}$ [Note: $\underline{y},\underline{g}$ are vectors; $\underline{\underline{A}}$ represents a maxtrix] $\underline{y}^{(h)}$ is the homogeneous solution for above system and $\underline{y}^{(1)},\underline{y}^{(2)}$ are its basis of solution vectors. Then, $\underline{y}^{(h)} = \underline{Y}(t)c$, and $\underline{Y}(t) = [\underline{y}^{(1)},\underline{y}^{(2)}]^T$ is the fundamental matrix. If a particular solution of this nonhomogeneous system is $\underline{y}^{(p)}$

Set
$$\underline{y}^{(p)} = \underline{\underline{Y}}(t)\underline{u}(t)$$

Prove $\underline{u}' = \underline{\underline{Y}}^{-1}\underline{g}$ (so-called Method of Variation of Parameters)

(b) Solve the following system by the Method of Variation of Parameters

$$y_1' = y_2 + t$$

$$y_2' = y_1 - 3t$$

(25%)

- 2. Let $f=e^z+yz$. Compute the rate of change of f in the direction of unit vector $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ at the point (1, -1, 1). (13%)
- 3. Let $\mathbf{F}(x,y,z)=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$. Evaluate the integral of \mathbf{F} along the followings path $\mathbf{c}(t)=(\cos t,\sin t,t), \quad 0\leq t\leq 4\pi.$ (12%)
- 4. Solve the diffusion equation

$$\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
 for $0 < x < L$, $t > 0$

subject to the boundary conditions

$$\frac{\partial u(0,t)}{\partial x} = 0, \quad u(L,t) = u_0 \quad \text{for } t > 0,$$

and the initial condition

$$u(x,0) = f(x)$$
 for $0 < x < L$. (13%)

國立清華大學 102 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目(代碼):9801工程數學

5. Use the residue theorem to evaluate the integral

$$\int_0^\infty \frac{x^2}{x^6 + 1} \, \mathrm{d}x \,. \tag{12\%}$$

6. Use an appropriate infinite series method about x=0 to find two solutions of the given differential equation.

$$xy'' - (x + 2)y'(x) + 2y(x) = 0$$
 (13%)

7. Use Laplace transform to solve the given equation.

$$f(t) = 3 + \int_0^t f(\tau) \cos 2(t - \tau) d\tau$$
 (12%)

國立清華大學 102 學年度碩士班考試入學試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目(代碼):9801工程數學

共__3_頁,第_3_頁 *請在【答案卷、卡】作答

參考資料:

少 了 只 们 ·	
Function f(t)	Laplace transform F(s)
e ^{at}	$\frac{1}{s-a}$
sinωt	$\frac{\omega}{s^2 + \omega^2}$
cosωt	$\frac{s}{s^2 + \omega^2}$
f'(t)	sF(s)- f(0)
f " (t)	$s^2 F(s) - s f(0) - f'(0)$
t ⁿ	$\frac{n!}{s^{n+1}}$
$\int_0^t f(\tau)g(t-\tau)d\tau = [f(t)^*g(t)]$	F(s) G(s)
$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$
f(t-a) U(t-a)	e ^{-as} F(s)
$e^{at} f(t)$	F(s-a)
t f(t)	$-\frac{dF(s)}{ds}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s')ds'$