國立清華大學 100 學年度碩士班入學考試試題

系所班組別:工程與系統科學系甲組

考試科目(代碼):材料熱力學(2802)

共 2 頁,第 1 頁 *請在【答案卷、卡】作答 1. (15%) A gas follows the equation of state PV=nRT. For gas, $C_p = 21.086 + 8.4 \times 10^{-3} \text{T}$ (J.K-1.mole-1) (a) given 1 mole of this gas and P_1 =20atm, V=2liter, calculate C_v = (b) if the temperature is raised up to 409.7° C, calculate $\Delta U=$ and , for the gas for the process given in (b). $\Delta H =$ and $\Delta H^{o}_{900} = _{_{_{_{_{_{_{_{_{_{_{0}}}}}}}}}}$ 2. (15%) Calculate $\Delta H^{o}_{500} =$ for the reaction $Pb_{(s, l)}+1/2O_{2(g)}=PbO_{(s)}$ Given: $C_{p, Pb(s)} = 5.63 + 2.33 \times 10^{-3} \text{T cal/K} (298-600 \text{K})$ $C_{p, Pb(l)}^{(l)} = 7.75 - 0.74 \times 10^{-3} \text{T cal/K} (600 - 1200 \text{K})$ $C_{p, o2(q)}^{-5} = 7.16 + 1.0 \times 10^{-3} \text{T} - 0.4 \times 10^{-5} \text{T}^2 \text{ cal/K} (298 - 3000 \text{K})$ $C_{p, PbO(s)} = 9.05 + 6.4 \times 10^{-3} \text{T cal/K} (298-1159 \text{K})$ $\Delta H^{o}_{298, PbO} = -52400 \text{ cal/mole}$ $\Delta H_{m,Pb}^{o}$ =1150 cal/mole at 600K $T_{m. Pb} = 600K$ $T_{m, PbO} = 1159K$ (20%)Calculate ΔU= $\Delta H=$ ΔS= and $\Delta G =$ $\Delta A =$ expanding 1 mole of ideal gas at 25°C from 10 to 100cm³. (16 %) Please estimate the entropy and the enthalpy involved for the melting of the metals Zn and Al. Given: T_{m. Zn}=419°C and T_{m.Al}=660°C. $\Delta S_{M,Zn} =$ $\Delta S_{M.AI}=$ _ $\Delta H_{M. Zn} = \underline{\hspace{1cm}}$ $\Delta H_{M,AI}=$ 5. (20%) The vapor pressure of solid Zinc varies with temperature as lnP=-15780/T+0.755lnT+25.89and the vapor pressure of liquid Zinc varies with temperature as InP=-15250/T-1.255InT+28.42 where P is measured in mm of Hg in each case. Calculate (a) T_{b. Zn}(boiling temperature under 1atm)=____ (b) $T_{tr. Zn}$ (triple point of Zn)=_____

國立清華大學 100 學年度碩士班入學考試試題

系所班組別:工程與系統科學系甲組

考試科目(代碼):材料熱力學(2802)

共__2__頁,第__2__頁 *請在【答案卷、卡】作答

(i) $\Delta H_{(s->v)}$ (Heat of vaporization at boiling temperature under 1atm = (d) $\Delta H_{(s->l)}$ (Heat of fusion at triple point) =
6. (14%) Carbon has two allotropes, graphite and diamond. At 25°C and 1 atm pressure graphite is the stable phase. The transformation of graphite to diamond occurs at 25°C and 14300 atm pressure. Please determine the density of graphite at 25°C ρ _{graphite, 25°C=}
through the data given below.

H_{298(graphite)}-H_{298(diamond)}=-1900joule/mole S_{298(graphite)}=5.73joule/degree.mole S_{298(diamond)}=2.43joule/degree.mole The density of diamond at 25°C is 3.515g/cm³