| 1000 | 20 | . 1. | Andre | | 487 | | H5 | 1.5 | |------|----|------|-------|---|-----|---|----|-----| | 國 | 立 | 清 | 華 | 大 | 學 | 印 | 超 | 紙 | 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目 有機化學 科目代碼 0302、0506 共 10 頁第 1 頁 *請在【答案卷】內作答 I. Choose one correct answer for each of the following questions. (36%, 2% each) - 1. How many chiral carbons are there in an open-chain aldohexose such as glucose? - (A) 2 (B) 3 (C) 4 (D) 5 - ketohexose with the reaction of HIO_4 a from 2. Give products the HOCH2CHOHCHOHCHOHCOCH2OH - (A) $5HCOOH + H_2C=O$ (B) $4HCOOH + H_2C=O$ - (C) $3HCOOH + 3 H_2C=O(D) 3HCOOH + 2H_2C=O + CO_2$ - 3. What is the smallest aldose able to form a cyclic hemiacetal? - (A) triose (B) tetrose - (C) pentose - (D) hexose - 4. The specific rotation for α and β -anomers of glucose is +112° and +19°, respectively. For a constant equilibrium mixture with a specific rotation of +52.7°, calculate the % composition of each anomer. - (A) α : 45%, : β : 55% - (B) α : 63.8%, : β : 36.2% - (C) α : 36.2%, : β : 63.8% (D) α : 55%, : β : 45% - 5. Which of the following amino acids have hetracyclic structures? - IV. Tryptophane I. Lysine II. Histidine III. Proline - (A) II, IV (B) II, III, IV (C) I, II, IV (D) I, II, III - 6. What is the pI value of Histidine with p Ka_1 , p Ka_2 , p Ka_3 corresponding to 1.82, 6.0, and 9.7, respectively? - (A) 7.59 (B) 3.91 (C) 5.33 (D) 7.82 - 7. Which of the following statements regarding addition and removal of blocking group during peptide synthesis is correct? - (A) The side chain of Ser can be blocked by acetyl group and deprotected by H₂/Pd - (B) The side chain of Lys can be blocked by p-toluenesulfonyl group and deprotected by CF₃COOH - (C) The side chain of Glu can be blocked by benzyl ester and deprotected by weak alkali - (D) The side chain of His can be blocked by N-benzyl group and deprotected by sodium in liquid ammonia | | 國 | 立 | 清 | 華 | 大 | 學 | 命 | 題 | 紙 | | |-----|-------------------------------|--|---|---|--|------------------|--------------|----------------------|--------------------------|-----| | | 96 | 學年度生 | 命科學院、生 | 生命科學門 | 完醫學生物 | 科技學: | 程_系(所) | Z_ | 組碩士班入 | 學考試 | | 科 | 目有 | 機化學 | 科目代碼 | 0302 \ 05 | 506共_10 | 頁第 | 2_頁 *請在 | 【答案 | 卷】內作答 | | | 8. | | icial sweetr
B) 4 (C) 6 | - | tic dipept | ide AspPhe | How | many stereo | isomers | s are possible? | · | | 9. | I. PhNH | 2 II. Piperi | compounds in
dine III. Pyr
(B) II, IV, II | idine IV | . Pyrrol | | | II | | | | 10. | (A) Tho
(B) o-N
(C) o-H | e dipole mo
litrophenol
lydroxyben | ring statement
ments of pher
has higher bo
zaldehyde has
ver boiling po | nol and me
iling poin
s higher be | ethanol are to than the modern | -isomer | | S | | | | 11. | I. pheno | II. o-nitro | compounds in ophenol III (B) II, IV, I, | . m-nitrop | henol IV. | <i>p</i> -nitrop | | Ι | | | | 12. | (A) Me | 3SiCH ₂ CO | ive effect, wh
OH > Me ₃ CC
> CICH ₂ CH ₂ C | H ₂ COOH | (B) ClCH ₂ (| COOH > | • | HOC | ect? | | | 13. | | | | • | | | | 5 | the molecula | | | | (A) 1 | (B) 2 | (C) 3 | (D) 4 | | | | | | | | 14. | (A) PhN | | | oxime of p
3CONHC | H ₃ | the pres | ence of cond | e. H ₂ SO | 4 and PCl ₅ ? | | | | | | • | | 2 9 | | | | | | |-------------------|--|------------------------------------|---|---|-----------------------|------------|------------|-------------|------------|---------| | | 國 | 立 | 清 | 華 | 大 | 學 | 命 | 題 | 紙 | | | | 96 學年度 | 生命科 | 學院、生 | 生命科學院 | 醫學生學 | 物科技學和 | 呈_系(所 | .) | 組碩士班 | 入學考試 | | 科目 | 有機化學 | 學 科 | 目代碼 | 0302 • 050 | 06共_ | 10頁第 | 3頁 | *請在【 | 答案卷】 | 內作答 | | (A) | Presence o | f rearrang | ement | (B) Anti- | -Markov | nikov addi | tion | ion of an a | lkene is c | orrect? | | (A)
(B)
(C) | (CH ₃) ₂ CH
CH ₃ CH ₂ SC
CH ₃ CH ₂ CI | OH and (CH_3 and (CH_2OH and | CH ₃) ₂ CH
CH ₃) ₂ CH
(CH ₃) ₂ C | tests can no
ISH; Hg ²⁺
ISH; NaOH
CHOH; I ₂ /C
H ₃ CH ₂ CH(| (aq)
) H | | een each j | pair of con | npounds? | | | I. cy
III. | ycloheptatri
2,4,6-triniti | ienyl carb | ocation | ds are arom II. cyclo IV. cyclo IV. ryclo | octatetra
obutadie | ne | | | | | | I. 3- | | entene II. | 2,3-penta | s are chirals
diene III. 2 | R, 5S-di | 105.0 | ne IV. Gl | ycine | | | 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目____有機化學___ 科目代碼__0302、0506__共_10_頁第__4__頁 *請在【答案卷】內作答 - II. Provide rational explanations, mechanisms, or calculations for each of the following questions. (20%, 4% each) - A tripeptide W is hydrolyzed completely to 2 eq. of Glu and 1 eq. each of Ala and NH₃. W has only 1 free carboxyl group and does <u>not</u> react with 2,4-dinitrofluorobenzene. Ala is released first when W is treated with carboxypeptidase. Determine the structure of X and briefly explain. - Draw a mechanism to explain the isolation of a tetradeuterated product from the reaction of CH₃CH=CHCHO with OD in D₂O. - 3. Balance the following oxidation reaction (in base) by the ion-electron (half cell) method. PhCH₂OH + KMnO₄ → PhCOOH + MnO₂ + H₂O + OH - 4. The reduction of 4-t-butyleyclohexanone with LiAlH4 gives mainly the *trans* alcohol (90%), but with Sia₂BH, the product is mainly *cis* alcohol (88%). Draw the structures of the alcohols and explain the different product distributions. - 5. Optically active (2S,3R)-3-bromo-2-butanol (**X**) reacts with KOH and MeOH to give an optically active epoxide (**Y**). **Y** is treated with KOH in H₂O to give 2,3-butanediol (**Z**). - (a) Write three-dimensional structures of X, Y, and Z. - (b) Does Z show optical rotation? Explain. 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目 有機化學 科目代碼 0302、0506 共 10 頁第 5 頁 *請在【答案卷】內作答 #### III. Spectroscopy (20%, 2% each) Choose one correct answer from each of the following questions. 1. Amines P, Q, R, S each have their parent cation peaks at m/z = 59. The highest intensity peaks are at m/z = 44 for P and Q, 30 for R, and 58 for S. Which one of them contains a tertiary amine? (A) P - (B) Q - (C) R - (D) S - (E) none of them - 2. The IR spectrum of a dilute solution of cis-3-fluorocyclohexanol shows a broader, lower-frequeny O-H stretching peak than does the trans isomer. Which of the following is the main determining factor? - (A) Van der Waals force (B) dipole-dipole interaction (C) intramolecular hydrogen bond (D) intermolecular hydrogen bond (E) steric hinderance - 3. The ¹³C-NMR spectra of *cis*-decalin (C₁₀H₁₈, consists of two fused cyclohexane rings) can exhibit very different characteristics over a wide temperature range due to the conformational exchange of the molecule. At 90 °C the conformational exchange is very fast. What would you expect to see in the spectrum? The spectrum shows (A) 4 peaks of relative intensities 2:1:1:1 (B) 5 peaks of relative intensities 1:1:1:1:1 (C) 2 peaks of relative intensities 4:1 (D) one peak (E) 3 peaks of relative intensities 2:2:1 - 4. Follow the previous question. What would you expect to see in the ¹³C-NMR spectrum when the temperature decreases to -50 °C, where the conformational exchange is slow? The spectrum shows (A) 4 peaks of relative intensities 2:1:1:1 (B) 5 peaks of relative intensities 1:1:1:1:1 (C) 2 peaks of relative intensities 4:1 (D) one peak (E) 3 peaks of relative intensities 2:2:1 - 5. Which of the following compounds could give rise to the infrared spectrum shown bellow? (A) acetanilide (B) aniline (C) N,N-dimethylformamide (D) m-anisidine (E) n-butylamine 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目 有機化學 科目代碼 0302、0506 共_10_頁第_6_頁 *請在【答案卷】內作答 6. Which of the following compounds is consistent with the ¹H-NMR spectrum shown below? (A) n-propyl formate (B) methyl propionate (C) ethyl acetate (D) methacrylic acid (E) ethyl acetate 7. Which of the following compounds is consistent with the ¹H-NMR spectrum shown below? (A) 2,3-xylenol (B) benzyl methyl ether (C) α-phenylethyl alcohol (D) 3,5-xylenol (E) β-phenylethyl alcohol 8. Which of the following statements is wrong? (A) IR absorption is due to molecular vibration (B) NMR signal is due to the radioactivity of nucleus under the influence of external magnetic field (C) The UV/Visible absorption for organic compounds involves the electronic transition in the π orbitals (D) Mass spectrometry resolves particles according to the charge/mass ratio (E) The bending frequency is often smaller than the stretching frequency of a molecular bond. 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目 有機化學 科目代碼 0302、0506 共_10_頁第_7_頁 *請在【答案卷】內作答 9. Geraniol, C₁₀H₁₈O, a terpene found in rose oil, gives the infrared, ¹³C-NMR and ¹H-NMR spectra shown below. Based on the spectra, which of following statements is **wrong**? (A) Geraniol is an aliphatic compound (B) Geraniol is a primary alcohol (C) Geraniol contains only one carbon-carbon double bond (D) Geraniol has three methyl groups (E) There is only one labile proton in Geraniol. 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目____有機化學__ 科目代碼__0302、0506__共_10_頁第_8_頁 *請在【答案卷】內作答 10. Deduce from the spectra below, the compound TT is (A) Benzyl acetate (B) hydrocinnamic acid C₆H₅CH₂COOH (C) cyclohexyl acetate (D) methyl phenylacetate (E) none of the above. 96 學年度_生命科學院、生命科學院醫學生物科技學程_系(所)__乙_組碩士班入學考試 科目___有機化學__ 科目代碼__0302、0506_共_10_頁第_9_頁 *請在【答案卷】內作答 #### IV. Predict major product for each of the following reactions. (24%, 2% each) 3. $$\frac{NO_2}{N^+}$$ $\frac{HCl}{O}$ 4. $$CH_2CI$$ Mg/ether CO_2, H^+ 96 學年度__生命科學院、生命科學院醫學生物科技學程_系(所)__乙__組碩士班入學考試 科目____有機化學__ 科目代碼__0302、0506__共_10_頁第_10_頁 *請在【答案卷】內作答 7. $$O - C - C = ^{14}CH_2$$ $$CH_3$$ $$Claisen rearrangement$$ $$G$$ 8. $$p$$ -quinone + $\underline{\underline{\mathbf{H}}}$ 9. $\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 10. Acetophenone NaBD₄/H₂O J 11. PhCH₂CH₂CH₂OH $\xrightarrow{\text{HF}}$ $\underline{\mathbf{K}}$ 12. $o ext{-FC}_6 ext{H}_4 ext{OMe}$ $ext{2PhLi}$ $ext{H}_2 ext{O}$