
	國	立	清	華	大	學	命	題	紙	
95 學年度		ēz	生命科學院			_系(所)丙		組碩士班入學考試		đ
科目	_輸送現象	泉及單元打	操作科	-目代碼	_1004	±_3頁3	第1頁	*請在	【答案卷卡】內	作答

 Determine the dimensionless groups formed from the variables involved in the flow of fluid external to a solid body. The force exerted on the body is a function of ν, ρ, μ, and L (a significant dimension of the body). Please apply Buckingham method with the following table for the variables and dimensions (M, L, t are fundamental dimensions) (15%)

Variable	Symbol	Dimensions
Force	F	ML/t^2
Velocity	ν	L/t
Density	ρ	M/L^3
Viscosity	μ	M/Lt
Length	L	L

2. A rotating shaft, as illustrated in the figure below, causes the fluid to move in circular streamlines with a velocity which is inversely proportional to the distance from the shaft. Find the shape of the free surface if the fluid can be considered inviscid. (15%)

	或	立 清	華	大	學	命	題	紙	
	95 學年度	生	命科學院		系(所)_	丙_	組	碩士班入學	考試
	科日輸送現象	及單元操作	_科目代碼_	_1004 +	3頁第	32頁	*請在	答案卷卡)	內作答
	 Saturated stear diameter of 2.0 outer pipe surf air is at 294 K. 85% magnesia 	09 cm and an c faces may be ta . Find the he	outside diame iken as 5680 at loss per me	ter of 2.67 W/m ² .K au ter of bare	cm. The nd 22.7 W/s pipe and f	convectiv m ² .K, resp	e coeffic	ients on the i	inner and unding
 4. The resistance R to mass transfer in an parallel-membrane artificial kidney is R = R_{Blood} + R_{Membrane} + R_{Dialysate}, where R = 1/K and K is the overall mass transfer coefficient. Given the following data, for the removal of urea from the plasma, (15%) Thickness of membrane δ = 0.5 mm Interface equilibrium coefficient φ = 0.2 Diffusion coefficient Dm = 5 x 10⁻⁷ cm² s⁻¹ K_{Blood} = 1 x 10-6 m s⁻¹ Please calculate the percentage of R which can be attributed to following components individually, (a) R_{Blood} (b) R_{Membrane} (c) R_{Dialysate} 									

	國		立	清	華	大	學	命	題	紙	
	95 4	學年度_		生命	科學院		_系(所)_	丙	组	碩士班入學考	武
The second se	斗目翰江	送現象》	及單元打	操作利	十目代碼	1004	共3頁第	Ŕ <u></u> 3頁	*請在	答案卷卡】	內作答
4)	5. In a microwave heated incubator, <i>E. coli</i> cells are cultured in a long test tube with diameter of 20 mm to express a recombinant human protein X. The test tube's outer surface is maintained at 37°C. Microware heating warms the test tube's contents uniformly with an intensity Q. What microware intensity will ensure that the temperature at the center o the tube will not rise above 42°C? Please express your answer in the unit of 'W m ⁻¹ '. (15%)										
	Note:						e culture me rical coordi			+ Q = 0	-1 K ⁻¹ .
6	6. According to a Poiseuille flow estimate, what is the flow rate in a male's femoral artery that has a radius of 0.5 cm, a dynamic viscosity of 0.05 cm ² s ⁻¹ and a wall shear stress of 15 dynes cm ⁻² ? (20%)										
	Note: Dynamic viscosity is μ , and kinematic viscosity is ν ,										
	The units of dynamic viscosity should be $\frac{g}{cm \cdot s}$.										
	$cm \cdot s$ The Poiseuille equation for velocity is:										
	$u = 2\overline{u} \left(1 - \frac{r^2}{R^2} \right),$										
	And the equations for shear stress at the wall and flow rate are:										
	$\tau = \mu \frac{du}{dr} = \mu \left[2\overline{u} \left(-\frac{2r}{R^2} \right) \right]_{r=R} = -\frac{4\mu u}{R}, \text{ and } Q = \pi R^2 \overline{u} \Longrightarrow \overline{u} = \frac{Q}{\pi R^2}$										
										*	