國立清華大學命題紙

95學年度_生命科學院、生命科學院醫學生物科技學程_系(所)_乙、丙_組碩士班入學考試

科目___物理化學__科目代碼__0903、1003、1107__共__6_頁第_1_頁 *請在【答案卷卡】內作答

Gas constant R= 8.31 J/K mol, Boltzmann constant k= 1.38×10^{-23} J/K, Planck's constant h= 6.62×10^{-34} J s ln2=0.693, ln10=2.3

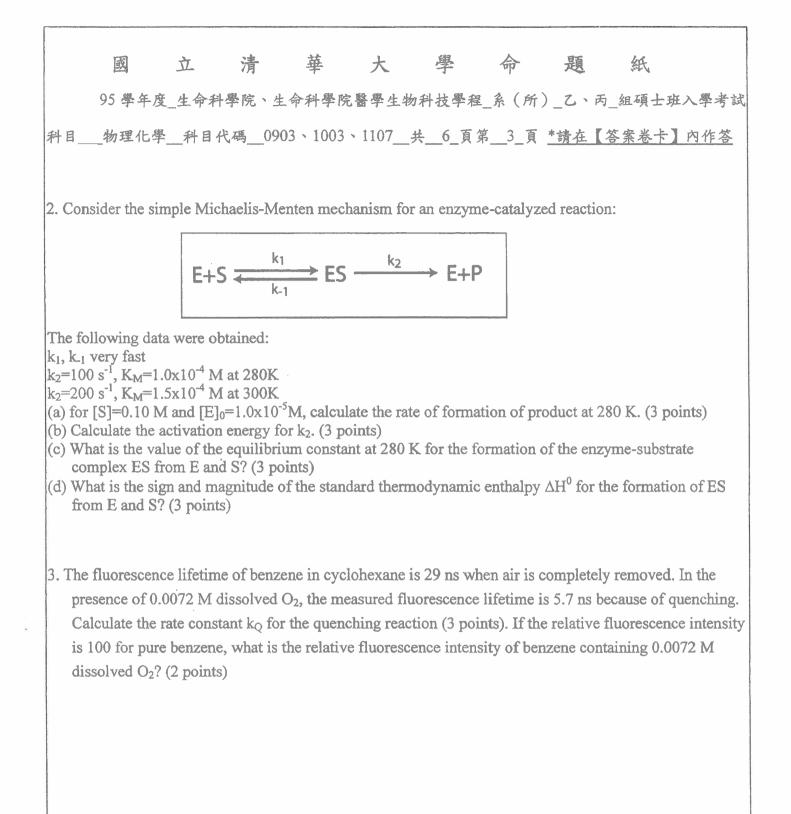
Part I. Select the best answer from each question. If there is no suitable answer, choose "(E) None of the above".

- 1. Which of the following statements is FALSE? (3 points)
 - (A) Kinetics tells us when and how fast a reaction can occur.
 - (B) Thermodynamics tells us whether a reaction can occur.
 - (C) All reactions rates increase with increasing temperature and concentration.
 - (D) Many reaction mechanisms can be proposed to be consistent with a given set of experimental observed rates.
 - (E) None of the above.

2. Which of the following statements about transition state is FALSE? (3 points)

- (A) The transition state corresponds to an energy minimum between two stable species (reactant and product) along the reaction pathway.
- (B) The transition state energy is the energy difference between the transition state and reactants.
- (C) The magnitude of the transition state energy characterizes the temperature dependence of the rate of the reaction.
- (D) The transition state is an unstable state that exists only for the time of a molecular vibration.
- (E) None of the above.
- 3. The rate for the reaction catalyzed by liver enzyme that converts C2H5OH into CH3CHO is observed to be constant. The kinetic order of the reaction is (3 points)
 - (A) 1/2
 - (B) 0
 - (C) 1
 - (D) 2
 - (E) None of the above.
- 4. Which of the following is FALSE? (3 points)
 - (A) An enzyme can increase the rate of a biological reaction by many orders of magnitude, and its structure changed at the end of the reaction.
 - (B) Most enzymes are proteins.
 - (C) Some RNA molecules can act as enzymes.
 - (D) Antibodies can be catalytic if they are made to stabilize the transition state and reduce the activation energy of a reaction.
 - (E) None of the above.
- 5. Consider an elementary particle in a one-dimensional box described by quantum mechanics. Which of the following is FALSE? (3 points)
 - (A) The energy gap between two adjacent energy levels decreases as the dimension of the box increases.
 - (B) The energy gap between two adjacent energy levels decreases as the mass of the particle increases.
 - (C) The energy gap between two adjacent energy levels decreases as the quantum number increases.
 - (D) The probability of finding the particle in the central half (between x=a/4 and x=3a/4, where "a" is the dimension of the box) is independent of the dimension of the box.
 - (E) None of the above

國	立	清	華	大	學	命	題	紙	
95 學年	度_生命利	斗學院、生	命科學院	醫學生物	的科技學程	₹_系(所))_乙、丙	_組碩士班	入學考試
科目物理化	學科目	代碼090	03、1003	· 1107	共6_頁	第_2頁	*請在【	答案卷卡】	內作答
 6. Which of the following statement is FALSE? (3 points) (A) Infrared absorption is associated with molecular vibration. (B) Radio frequency radiation is associated with the spin transition in the nuclear magnetic resonance. (C) Fluorescence is associated with electron spin transition under magnetic field (D) UV/Vis radiation is associated with electron transition. (E) None of the above. 									
 7. Which of the following statement about IR (Infrared) and Raman spectroscopy is FALSE? (3 points) (A) O₂ is IR inactive. (B) CO₂ is IR active (C) CO₂ is Raman active (D) For a molecule to be Raman active, it must possess permanent dipole moment. (E) None of the above. 									


Part II.

1. Imidazole (Im) can react with H⁺ or H2O to form positively charged imidazole (ImH⁺). The reaction mechanisms are

$$Im+H^{+} \xleftarrow[k_{1}]{k_{-1}} ImH^{+}$$
$$Im+H_{2}O \xleftarrow[k_{-2}]{k_{-2}} ImH^{+}+OH^{-}$$

The rate constants in aqueous solution are: $k_1 = 1.5 \times 10^{10} M^{-1} s^{-1}$; $k_1 = 1.5 \times 10^3 s^{-1}$; $k_2 = 2.5 \times 10^3 s^{-1}$; $k_2 = 2.5 \times 10^{10} M^{-1} s^{-1}$.

- (a) What is the value of the equilibrium constant for the ionization of imidazole (ImH⁺ <==> Im + H⁺)? (2 points)
- (b) Write the differential equation for the net rate of formation of ImH⁺. (2 points)
- (c) If the pH is suddenly changed for a solution of 0.1 M imidazole in water from pH7 to pH4, what is the rate-determining step for the appearance of ImH⁺ at pH4? (2 points)
- (d) What is the value of the initial rate of increase of ImH⁺ at pH4? (2 points)
- (e) The rate constant k₁ and k₋₁ both depend on temperature. Would you expect them to decrease or increase with increasing temperature? Which would you expect to change most with temperature and why? (2 points)
- (f) Predict the sign of the heat of ionization for imidazole based on your answer to part (e). (2 points)

			.+	*+	,	233	~	- 	1.4	
	國	立	清	華	大	学	命	題	紙	
	95 學年月	度_生命和	斗學院、生	主命科學的	完醫學生物	物科技學科	星_系(所)_乙、丙	〕_組碩士功	E入學考試
科目	物理化學	學科目	代碼09	03、1003	、1107	共6_頁	第_4頁	*請在【	答案卷卡	內作答
Part II Select		hoice tha	t best com	pletes the	statement	or answer	that quest	tion. (20 p	oints/2 poi	nts each)
sponta (A) ΔC (B) Ke (C) ΔS (D) Te	 In biochemical reaction, reactants may be converted into products. The extent to which this occurs spontaneously is expressed as which of the following? (A) ΔG (B) Keq (C) ΔS (D) Temperature (E) None of the above 									
quantit (A) q (B) \triangle H (C) \triangle H (D) Bo	 2. An ideal gas expands adiabatically against external pressure of 1 atm. What kinds of thermodynamic quantities q, w, △E and △H are equal to zero? (A) q (B) △E (C) △H (D) Both w &△E (E) Both q &△H 									
 3. An ideal gas expands isothermally against external pressure of 1 atm. What kinds of thermodynamic quantities q, w, △E and △H are equal to zero? (A) q (B) △E (C) w (D) Both △H & △E (E) Both q & w 										
1	which of rature? <u>∆H(kj)</u> +80 +80 -80 -80 0		wing sets <u>AS (J/K)</u> +10 -10 -10 +10 -10	of values of	of ∆H and	∆S will a	reaction b	e spontan	eous only a	t high
1	5. In which of the following processes is energy transferred into the substance by work (w>0)? (A)Expansion of a gas against the surroundings									

(A) Expansion of a gas against the surroundings
(B) Expansion of a gas into a vacuum
(C) Vaporization of one mole of water at 70°C in an open container
(D) Combustion of ethane in a constant-volume container

(E) Melting of 100 g of ice on a laboratory bench top

	威	立	清	華	大	學	命	題	紙	
	95 學年度	_生命科	學院、生	命科學院	2.醫學生物	科技學程	_系(所)	_乙、丙	_組碩士班入	學考試
科目	物理化學	科目代	、碼090	3、1003	、1107 ;	失6_頁到	第_5頁	*請在【	答案卷卡】户	日作答
of the (A) (B) (C) (D) (E)	following q = w w = 2q $\Delta U=0$	statemen				position u	indergoes a	an adiaba	tic expansion	, which
 (A) closed systems exchanging only energy with the surroundings. (B) isolated systems that are totally contained. (C) open systems exchanging only energy with the surroundings. (D) open systems exchanging both energy and matter with their surroundings. (E) none of the above. 										
8. Which equation <u>defines</u> a system at equilibrium? (A) $\Delta G > 0$ (B) $\Delta G^{\circ} = \Delta G$ (C) $\Delta G = 0$ (D) $\Delta G^{\circ} = 0$ (E) $\Delta G = RT \ln ([products]/[reactants])$										
9. To (A) S (B) S (C) A (D) T	predict wh ubtract the um the $\Delta G'$ dd the $\Delta S'$ he absolute	ether pair smaller f o's for eac values for e value of	rs of coup rom the la ch reactior r each reac	led reactinger ΔG .	onstant ten	nperature.		-	tive ∆G°'.	
10. If gas is (A) 8 (B) 1 (C) 3 (D) 4 (E) 6	8 g 6 g 2 g 8 g	a gas occ	oupies 11.2	2 L at 0.0	0 C and 0.	125 atmos	phere, the	n the mol	ecular mass o	f the

國立清華大學命題紙

95 學年度_生命科學院、生命科學院醫學生物科技學程_系(所)_乙、丙_組碩士班入學考試

科目___物理化學__科目代碼__0903、1003、1107__共__6_頁第__6_頁 *請在【答案卷卡】內作答

Part IV.

1. (20%)

The Na⁺-K⁺ pump uses the free energy of hydrolysis of ATP to pump Na⁺ ions out of the cell and K⁺ ions into the cell at 300°K. The chemical potential $\Delta\mu^{\circ}$ is -40 KJ for ATP hydrolyses at 300°K; the ratio of ATP to ADP in cells is 100. There is also a voltage difference of -100mV across the membrane. The inside membrane is negative relative to the outside membrane. The [Na⁺] in = 10mM, [Na⁺] out = 100mM, [K⁺] in = 10mM, [K⁺] out = 1mM. (ln10= 2.3, R= 8.314 J/K mol, Faraday constant= 96.485 KJ/mol)

- (a) What is the free energy to transport 3 mol Na⁺ out the membrane?
- (b) What is the free energy to transport 2 mol K⁺ into the membrane?
- (c) What is the total free energy cost of transporting 3 mol Na⁺ ions out the membrane and 2 mol of K⁺ ions into the membrane in Na⁺-K⁺ pump?
- (d) What is the free energy for the hydrolysis of ATP (ATP \rightarrow ADP + P)?
- (e) Weather this active transport reaction Na⁺-K⁺ pump can occur using the free energy of hydrolysis of ATP?

2. (10%)

In general, native proteins are in equilibrium with denatured forms:

 $Protein(native) \rightarrow Protein(denatured)$

For ribonuclease, the following concentration data for the two forms were experimentally determined for a total protein concentration of 1×10^{-3} . Determine $\triangle H$ for the reaction, assuming it to be independent for the temperature.

Temperature (°C)	Native	Denatured
27	9.97x10 ⁻⁴ mol L ⁻¹	2.5x10 ⁻⁶ mol L ⁻¹
127	8x10 ⁻⁴ mol L ⁻¹	2x10 ⁻⁴ mol L ⁻¹