華 大 題 紙 威 清 立

九十三學年度 生科院丙組 、生科院 (結構生物學程) 乙組 碩士班入學考試 科目__近代物理 科號 1002、1202 共 2 頁第 1 頁 *請在試卷【答案卷】內作答 铚格 5 分,共 100 分

答題時請列出計算過程與答案,數值僅需正確至三位有效數字

Physical Constant $e = 1.60218 \times 10^{-19} C$

 $\alpha = 1/137.036$

$$a_0 = 5.292 \times 10^{-11} \text{ m}$$

$$c = 2.9979 \times 10^8 \text{ m/s}$$

 $\begin{aligned} k_{B} &= 1.381 \times 10^{-23} \text{ J K} & a_{0} &= 5.292 \times 10^{-11} \text{ m} \\ m_{c} &= 9.10939 \times 10^{-31} \text{kg} & c &= 2.9979 \times 10^{8} \text{ m/s} \\ 1/4\pi\epsilon_{0} &= 8.988 \times 10^{9} \, \text{N-m}^{2} / \, \text{C}^{2} & h &= 6.626 \times 10^{-34} \, \text{J s} \end{aligned}$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

ln2 = 0.693

- The de Broglie wavelength of a 200 keV photon is __(1)__. If an electron has the same wavelength, it's energy (in eV) is __(2)__.
- 2. The 200 keV photon undergoes a Compton scattering and was detected at the scattering angle of 60°, the wavelenth is changed by (3). (Please use +/- to indicate increase/decrease of wavelength.)
- Electrons of energy 1.5 GeV (1.5×10^9 eV) are moving at nearly the speed of light. It's 3. speed is lower than c by a ratio of __(4) __.
- Two particles are moving in the same direction of speed 0.9 c and 0.6 c. The relative speed is <u>(5)</u>.
- A particle moves in a one-dimensional infinite square potential well between x=0 and x=a. The energy eigenvalue for the ground state is __(6)_. The probality of this particle at ground state appear in the region of $0 \le x \le a/4$ is ___(7)__.
- Given a quantum system, let φ_g and φ_e be the normalized wave function for the lowest two states with eigenenergies Eg and Ee. Suppose a particle's wave function is described by φ = $1/\sqrt{5} \, \varphi_g + 2/\sqrt{5} \, \varphi_c$, the energy expectation value is _____(8)_. The probability of finding the particle at ground state is __(9)_.

國立清華大學命題紙

九十三學年度<u>生科院丙組、生科院(結構生物學程)乙組</u>碩士班入學考試 科目<u>近代物理</u>科號 1002、1202 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

- A particle of mass m is under a potential of the form V(x) = -α δ(x), where α is a constant.
 The bound state wave function is __(10)__ and the energy eigen value is __(11)__.
- 8. Aexp($-\alpha x^2$) is the ground state eigenfunction of a simple harmonic oscillator with the potential $V = \frac{1}{2}m\omega^2 x^2$, α is __(12)__, the ground state energy is __(13)__.
- The ground state energy of a hydrogen atom is -13.6 eV. Neglecting the screening effect, the ionization energy for element K (Z=19) is __(14)_eV.
- According to selection rules, E1 transition can happen from an electron in 4d_{3/2} state to a lower energy final states at __(15)__. (Please list all possibilities.)
- 11. The three components of the angular momentum operator are defined as: $L_x \equiv y \ p_z z \ p_y$, $L_y \equiv z \ p_x x \ p_z$ and $L_z \equiv x \ p_y y \ p_x$. The commutator of any two operators A and B is defined as $[A,B] \equiv AB BA$. $[L_x, y] = \underline{(16)}, [L_x, L_y] = \underline{(17)}$.
- 12. Suppose protons do decay into neutrons, and the half-life is 10³⁷ y. The amount of water (with 10 protons per H₂O molecule) required for measuring one decay per day is ___(18)__. In order to obtain a statistical uncertainty of 10% or better, the experiment should last for at least ___(19)__, under the assumption that the background contributes 2 counts per day in the detecting system.
- 13. A hydrogen atom at 1s state of wave function

$$\Psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{3/2} e^{-r/a_0}$$

is under a small external electric field E_0z (along the z-direction). From perturbation theory the 1s energy is changed by __(20)__