	九十二學年度	生命科	學院	 系(舟	斤)	丙	組碩士班研究生招生考試
科目_	近代物理	_科號	_1002	 _3	_頁第	_1頁	*請在試卷【答案卷】內作答

Plank's constant $h = 6.626 \times 10^{-34}$ joule-sec

Coulomb's law constant $1/4\pi\varepsilon_0 = 8.998 \times 10^9 \text{ nt-m}^2/\text{coul}^2$

Bohr magneton $\mu_b = e\hbar/2m_e = 9.27 \times 10^{-24}$ joule/T

Bohr radius $a_0 = 4\pi\epsilon_0 \hbar^2 / m_e e^2 = 5.29 \times 10^{-11} \text{ m}$

Bohr energy $E_1 = -m_e e^4 / (4\pi \epsilon_0)^2 (2\hbar^2) = 13.6 \text{ eV}$

Electron Compton wavelength $\lambda_c = h/m_e c = 2.43 \times 10^{-12}$ m

Rydberg constant $R_{\infty} = 109737$ cm⁻¹

Boltzmann's constant $k = 1.38 \times 10^{-23}$ joule/%

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ joule}$

 $m_e = 0.511 \text{ MeV/c}^2$

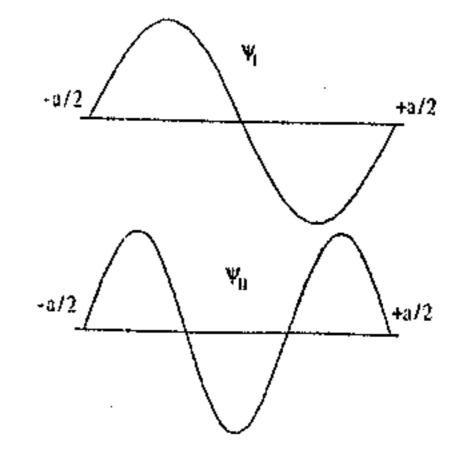
 $hc = 1.240 \times 10^3 \,\text{eV} \,\text{nm}$

Part I (50%)

Note: There are 10 blanks from A to J in this part. Each gets 5 points (5%). Please list the answers of each blank on the first page of your answer sheet.

- A pion with a rest energy of 135MeV, moves through the laboratory at v=0.98c and decays into two gamma rays of equal energies making equal angle θ with the direction of motion. Find the angle θ (A) and the energy (B) of each gamma ray.
- 2. X-ray of wavelength 0.24nm are Compton-scattered, and the scattered beam is observed at an angle of 50.0° relative to the incident beam. Find the wavelength (C) of the scattered x-rays, and the kinetic energy (D) of the scattered electrons.
- 3. A charged particle with charge e, rest mass m₀ is applied by an accelerating potential V, and moves at relativistic speeds, what is its de Broglie wavelength (E) ?

國 立 清 華 大 學 命 題 紙


	九十二學年度	生命科學院	系(月	听)	丙	組碩士班	研究生招	生考試
科目_	近代物理	科號1002	_共3_	頁第	2_ 頁	*請在試卷	【答案卷】	內作答

- 4. A particle's motion is limited to x-axis, it has wave function ϕ =ax between x=0 and x=1; ϕ =0 elsewhere. What is the probability (F) that the particle can be found between x=0.4 and 0.5? and what is the expectation value <x> (G) of the particle's position?
- 5. A collection of hydrogen atoms is placed in a magnetic field of 3.50 T. Ignoring the effects of electron spin. Find the wavelengths (H) of the three normal Zeeman components of the 3d to 2p transition.
- 6. The electronic configuration of carbon atom (Z=6) is $1s^22s^22p^2$. Find the total orbital quantum number __(I) _ and spin quantum __(J) _ on its ground state.

Part II (50%)

Note: There are four problems in this part. Please write down the answers start from the second page of your answer sheet.

- 1. (12%) A muonic atom contains a nucleus of charge Ze and a negative muon, μ -, moving about it. The μ is an elementary particle with charge -e and a mass that is 207 times as large as an electron mass. Such an atom is formed when a proton, or some other nucleus, captures a μ -.
 - (a) Calculate the radius of first Bohr orbit of a muonic atom with Z=1.
 - (b) Calculate the binding energy of a muonic atom with Z=1.
 - (c) What is the wavelength of the first line in the Lyman series of such an atom?
- 2. (10%) Two possible eigenfunctions for a particle moving freely in a region of length a, but strictly confined to that region, are shown in Figure A. When the particle is in the state corresponding to the eignfunction ψ_I , its total energy is 4eV.
 - (a) What is its total energy in the state corresponding to ψη?
 - (b) What is the lowest possible total energy for the particle in this system?

國 立 清 華 大 學 命 題 紙

九十二學年度_____生命科學院_____系(所)_____丙____組碩士班研究生招生考試 科目____近代物理_____科號__1002__共__3__頁第__3__頁 *請在試卷【答案卷】內作答

- 3. (14%) In its ground stat, the size of the hydrogen atom can be taken to be the radius of the n=1 shell for Z=1, which is essentially $a_0 = 4\pi\varepsilon_0 \hbar/\mu e^2 \approx 0.5 \text{ Å}$. Show that this fundamental atomic dimension can be obtained directly from consideration of the uncertainty principle.
- 4. (14%) A beam of hydrogen atoms, emitted from an oven running at temperature T=400°K, is sent through a Stern-Gerlach magnet of length X= 1m. The atoms experience a magnetic field with a gradient of 10 tesla/m. Calculate the transverse deflection of a typical atom in each component of the beam, due to the force exerted on its spin magnetic dipole moment, at the point where the beam leaves the magnet.