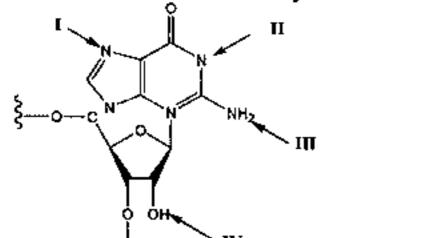
國立清華大學命題紙

		- 	/月		#			子	7	ak_	咫	,71%, 	
	九十二學年	·度	生命科	學	院(所)_		甲		組碩士	班研	究生招生	考試
;	科目分子生	物學	科號	0805	_共	5	頁第	1_	頁	*請在	試卷	【答案卷】	內作答
	Multiple choice												
	Which enzyme												
	3′ 95′		3		Ū								
)	+										
		ATP		\supset									
	(a) DNA poly	ymeras	se										
	(b) primase												
	(c) DNA heli	case								•			
	(d) nuclease												
	(e) DNA gyra	ase											
2.	If DNA polym	erase l	III could ac	id bases	in the	- 31 to	5' dir	ection i	n F	coli th	oro XXI	ould be no	naad for
	(a) DNA liga		iii coula a	ad odso.	, 111 111	55 (0	J un	cenon n	II E. (con, u	CIC W	ould be no .	need 101
	(b) Okazaki f		ents.										
	(c) helicase.	J											
	(d) gyrase (to	poisor	merase).										
	(e) Klenow fi	ragme	nts										
3.	The proofread	ing car	nahility of	DNA n	nivme	race is	s emir	valent ta	^				
	(a) $3' \rightarrow 5'$ exc		-	_	JI y III C	iase is	s cqui	vaicht k	J			•	
	(b) $5' \rightarrow 3' \text{ exc}$		•	'									
	(c) $3' \rightarrow 5'$ end		-	•									
	. ,			~									
	(d) $5' \rightarrow 3'$ end (e) None of the			ty.									
	(e) None of t	nese c	noices										
4.	Ultraviolet ligl	ht typi	cally produ	aces a(n)								
	(a) alkylation	1											
	(b) insertion												
	(c) tautomeri												
	(d) T-T dimn												
	(e) Depurina	tion											
5.	Which of the f	ollowi	ing stateme	ent conc	erning	the A	4c-Ds	of maiz	ze is l	NOT T	RUE		
	(a) Ds eleme				•								
	(b) Ac eleme	nt can	not transpo	ose by it	self			•					
	(c) these DN	A elen	nents can i	nduce c	hromo	some	break	cage					
	(d) these DN	A elen	nents can i	nduce t	ne form	natio	n of di	icentric	chro	moson	ne		
	(e) Ds eleme	nt can	not induce	chromo	some	break	age b	y itself					
6.	Which one of	the fol	lowing pro	icess rea	mires	a Rec	A act	ivitv					
	(a) activating				_			•)					
	(b) resolving		-	_		_		1					
	(c) resolving				-								
	(d) activating		_	-	,								
	(e) Integration	on of λ	•										

國立清華大學命題紙

	九十二學年度	生命科	學	院	(所)		T.		_組碩士班研究生招生考試	
科[3 分子生物學	科號	0805	_共_	5	_頁第_	2	頁	*請在試卷【答案卷】內作答	


- 7. Why DNA polymerase I, in stead of Klenow fragment, is used for the nick-translation reaction?
 - (a) because the DNA polymerase I possesses the DNA polymerization activity
 - (b) because the DNA polymerase I can synthesize DNA without the need of primer
 - (c) because the DNA polymerase I possesses 5' to 3' exonuclease activity
 - (d) because the DNA polymerase I possesses 3' to 5 exonuclease activity
 - (e) all of above
- 8. Which of the following enzymatic activities is involved in replicating the ends of eucaryotic chromosomes?
 - (a) DNA-dependent DNA polymerase
 - (b) RNA-dependent RNA polymerase
 - (c) RNA-dependent DNA polymerase
 - (d) Klenow enzyme
 - (e) DNA-dependent RNA polymerase III
- 9. The existence of Okazaki fragments demonstrate the
 - (a) DNA synthesis is semiconservative
 - (b) DNA synthesis is discontinuous
 - (c) DNA synthesis is conservative
 - (d) DNA synthesis is dispersed
 - (e) DNA synthesis requires a primer
- 10. Which of the following mechanisms is not responsible for generating a diversified antibody population to recognize various antigens (antibody diversity)?
 - (a) gene mutation in the antibody producing cells
 - (b) rearrangement of immunoglobulin gene
 - (c) a combination of heavy chain with one of the light chains
 - (d) imprecise joining of coding sequence
 - (e) alternative splicing
- 11. Which of the following enzyme uses RNA to replicate DNA?
 - (a) DNA polymerase
 - (b) RNA polymerase
 - (c) Reverse transcriptase
 - (d) Restriction enzyme
- 12. Hydrogen bonding is strongest between which two of the following structures?

- (a) I and II
- (b) I and IV
- (c) II and III
- (d) II and IV

國立清華大學命題紙

九十二學年度<u>生命科學</u>院(所)<u>甲</u>組碩士班研究生招生考試 科目<u>分子生物學科號 0805 共 5 頁第 3 頁 *請在試卷【答案卷】內作答</u>

13. What is the most likely site of attack of alkylating agents on the DNA structure?

- (a) I
- (b) II
- (c) III
- (d) VI
- 14. How many aminoacyl-tRNA synthetases are there in a human cell?
 - (a) 64
 - (b) 61
 - (c) 23
 - (d) 20
- 15. The enzyme that is used to join two DNA fragments is:
 - (a) a restriction enzyme.
 - (b) DNA polymerase.
 - (c) an endonuclease.
 - (d) DNA gyrase.
 - (e) DNA ligase.
- 16. Which of the following proteins bind GTP?

IF-2 II. IF-3 III. EF-Tu IV. EF-G

- (a) I, III
- (b) I, III, IV
- (c) I, II, III
- (d) I, II, IV
- 17. Peptidyl transferase activity can be destroyed upon treatment with
 - (a) SDS
 - (b) Phenol
 - (c) Proteinase K
 - (d) RNase T1
- 18. Which of the following is not a cloning vector?
 - (a) cosmid
 - (b) plasmid
 - (c) autonomously replicating sequence (ARS)
 - (d) yeast Artificial Chromosome (YAC)
 - (e) bacterial Artificial Chromosome (BAC)
- 19. When mutations are available in a gene of interest, the wild-type allele of the gene can be identified by a process called:
 - (a) a. in situ hybridization.
 - (b) plaque hybridization.
 - (c) Southern hybridization.
 - (d) complementation screening.
 - (e) in vitro packaging.

國 立 清 華 大 學 命 題 紙

	九十二學年度 生命科學 院(所) 甲 組碩士班研究生招生考試								
科	目 分子生物學 科號 0805 共 5 頁第 4 頁 *請在試卷【答案卷】內作答								
20. V	 20. Which of the following cloning vectors would you use to clone an insert of size 500 kb? (a) a plasmid vector (b) shttle vector (c) cosmid vector (d) phage λ (e) yeast artificial chromosome 								
II. <u>Matching</u> For questions 1-20 chose the most appropriate answer from the answer box below. Certain answer may be used more than once or none at all. (2 pt each)									
	ACUAAC AAUAAA GUAUAG GGUGUU GGGCCCC U2 snRNA U4 snRNA U5 snRNA U6 snRNA gRNA polymerase III hnRNA tRNA RNAi rRNA SL 1 polymerase I polymerase II TFIIA TFIIB TFIID TFIIH TFIIH CBF α subunit β subunit σ factor								
1	stimulates initiation but not elongation of transcription.								
2.	The RNA polymerase has a C-terminal domain that can recognize and bind to a promoter's UP element.								
3.	The RNA polymerase binds nucleotides at the active site where phosphodiester bonds are formed								
	The RNA polymerase that makes 28S rRNA is								
5.	The RNA polymerase that makes hnRNA is								
6.	The RNA polymerase that makes 5S rRNA is								
[_	The transcription factor that binds to TATA is								
8.	The transcription factor that binds to RNA polymerase II directly is								
!									
). The transcription factor that has a DNA helicase activity is								
11. The transcription factor that does not bind by itself to the promoter but can interact with the crude RNA polymerase I is									
12.	The transcription factor that can stimulate activity of RNA polymerase I is								
13.	3. The consensus sequence at the branch point of an intron is								
14.	4. The consensus sequence for polyadenylation signal is								
15.	. The consensus sequence at the 5' splicing site is								
16.	. The interacts with the 3' splicing site.								
17.	. The interacts with sequence around branch point during splicing.								
18.	3. The small nuclear RNA does not have protein associated with it.								
	. Control of gene expression by specific mRNA degradation is called								
1	The RNA that participates in RNA editing is								

九十二學年度——生命科學——院(所)——甲—組碩士班研究生招生考試

科目___分子生物學___科號___0805 共___5___頁第____5__頁 *請在試卷【答案卷】內作答

III. Short anser/essay

1. Determine the length and the nature (5' or 3') of the overhang (if any) created by the following enzymes. (3 pt)

ClaI

AT↓CGAT

 $Pvu\Pi$

CAG↓CTG

SacI

GAGCT↓C

- 2. How would you label the 5'ends of a double-strained DNA? The 3'-end? (4 pt)
- Answer the following questions based on your knowledge about the chemical structure of an antibiotic puromycin as shown below.

- (A) What molecule does puromycin mimic? (2 pt)
- (B) How can puromycin be used to study whether charged-tRNA is in the A or P site of the ribosome.? (2 pt)
- (C) Design two experiments to investigate specific protein synthesis events employing puromycin? (4 pt)
- 4. Attenuation in the *trp* operon imposes an extra level of control on an operon. Please explain how can RNA polymerase reads through the attenuator under low tryptophan condition. (5 pt)