九十一學年度<u>生命科學院四所</u>碩士班研究生招生考試

科號 0903 1003 共 2 頁第 1 頁*請在試卷【答案卷】內作答 科目 物理化學

1. (10%)

Find the entropy change of the system (ΔS_{sys}), of the surrounding (ΔS_{surr}) and of the universe(ΔS_{univ}) if 3.00 mol of water freezes reversible at 1.00 atm. The freezing temperature is 0.00 °C at this pressure, and the specific enthalpy change of fusion is equal to 79.7 cal g at this temperature. (The specific heat capacity of liquid water = 4.184 J cal 1)

2. (25%)

Please state the thermodynamic quantities q, w, ΔE and ΔH is greater than, equal to, or less than zero for the following process. Explain your answers briefly.

(a) Two copper bars, one initially at 80°C and the other initially at 20°C, are brought into contact with

each other in a thermally insulated compartment and then allowed to come a equilibrium

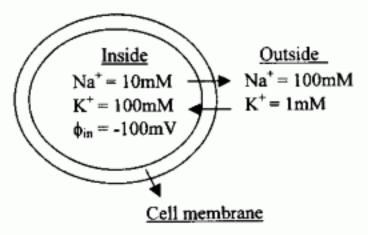
(b) A sample of liquid in a thermally insulated container (a calorimeter) is stirred for I hr by a mechanical linkage to a motor in the surroundings.

(c) A sample of H2 gas is mixed with an equimolar amount of O2 gas at the same temperature and pressure

under conditions where no chemical reaction occurs between them.

3. (15%)

The Na+K+ pump uses the free energy of hydrolysis of ATP to pump Na+ ions out of the cell and K+ ions into the cell at 300°K. The chemical potential Δμ° is -40 KJ for ATP hydrolyses at 300°K; the ratio of ATP to ADP in cells is 100. There is also a voltage difference of -100mV across the membrane. The inside membrane is negative relative to the outside membrane. The [Na⁺] in = 10mM, [Na⁺] out = 100mM, [K⁺] in=100mM, [K⁺] out= 1mM. (ln10= 2.3, R= 8.314 J/K mol, Faraday constant= 96.485 KJ/mol)


(1) What is the free energy to transport 3 mol Na⁺ out the membrane?

(2) What is the free energy to transport 2 mol K⁺ into the membrane?

(3) What is the total free energy cost of transporting 3 mol Na⁺ ions out the membrane and 2 mol of K⁺ ions into the membrane in Na+K+ pump?

(4) What is the free energy for the hydrolysis of ATP (ATP → ADP + P)?

(5) Weather this active transport reaction Na+K+ pump can occur using the free energy of hydrolysis of ATP?

九十一學年度 生命科學院四所 碩士班研究生招生考試

科目 物理化學 科號 0903 1003 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

4. (15%)

Natural chlorine (Z=17) is composed of two isotopes, ³⁵Cl and ³⁷Cl. The atomic mass for chlorine is 35.5 in the periodic table.

- (1) What is the composition of each nucleus?
- (2) What is the natural abundance of each isotope?
- (3) Can they be detected by nmr? Why?

5. (12%)

- (1) For a 400-nm light, calculate its frequency, energy and wavenumber.
- (2) Which region of the electromagnetic spectrum would you expect it to appear?

(Plank's constant $h = 6.63 \times 10^{-34} \text{ J*sec}$; $c = 3 \times 10^8 \text{ m/sec}$)

6. (14%)

$$A \rightarrow B$$

- (1) If the above reaction is zero order in substance A.
- (2) If the above reaction is first order in substance A.

Starting with the differential rate law derive an expression for t1/2 in terms of the starting concentration,

[A]₀, and rate constant, k.

7. (9%)

For the reaction

$$A + B \rightarrow C$$

The rate law is found to be

$$-d[A]/dt = k[A][OH]$$

- Propose a mechanism for this reaction.
- (2) Deduce the rate law from the proposed mechanism.