### 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生招生考試 目<u>有機化學</u>科號 0802、1102 共<u>6</u>頁第<u>1</u>頁 <u>\*請在試卷【答案卷】內作答</u>

L Determine the structures of A, B, C, D, and E based on their spectroscopic data. (20%)
 (A) C<sub>7</sub>H<sub>12</sub>O<sub>3</sub>

UV:  $\lambda_{max} = 275 \text{ nm} (\epsilon = 25, \text{ ethanol})$ 

IR: 1130 cm<sup>-1</sup>, 1700 Cm<sup>-1</sup>

HNMR: 1.2 ppm, triplet, 3 H; 2.1 ppm, singlet, 3 H

2.5 ppm, triplet, 4 H; 4.0 ppm, quartet, 2 H

(B) C<sub>8</sub>H<sub>11</sub>N

IR: 690 cm<sup>-1</sup>, 730 cm<sup>-1</sup>, 3500 cm<sup>-1</sup>

HNMR: 1.4 ppm, singlet, 1 H; 2.5 ppm, singlet, 3 H

3.8 ppm, singlet, 2 H; 7.3 ppm, singlet, 5 H

(C) C<sub>9</sub>H<sub>11</sub>BrO

IR: 690 cm<sup>-1</sup>, 760 cm<sup>-1</sup>, 1250 cm<sup>-1</sup>

HNMR: 2.3 ppm, quintet, 2 H; 3.6 ppm, triplet, 2 H

4.1 ppm, triplet, 2 H; 7.0 ppm, multiplet, 5 H

- (D) Ozonolysis of D, C<sub>11</sub>H<sub>12</sub>O, gives H<sub>2</sub>CO and E, C<sub>10</sub>H<sub>10</sub>O. Both D and E give a precipitate from reaction with I<sub>2</sub>/OH<sup>-</sup>. The HNMR spectrum of E shows two singlets integrating 3:2. Its <sup>13</sup>C spectrum has four signals.
- II. When trans-2-methylcyclohexanol is treated with tosyl chloride followed by KOEt, 3-methylcyclohexene is the only product. However, this sequence with cis-2-methylcyclohexanol gives 1-methylcyclohexene as the main product. Account for the difference in products.
- III. Optically active (2S,3R)-3-bromo-2-butanol (X) reacts with KOH in MeOH to give Y, an optically active epoxide. Y is then treated with KOH in H2O, giving 2,3-butanediol (Z).
  - (A) Write three dimensional structures of X, Y, and Z.
  - (B) Do you expect C to show optical rotation? Explain.

#### 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生招生考試

#### 目<u> 有機化學</u> 科號 <u>0802、1102 共 6 頁第 2 頁 **\*請在試卷【答案卷】內作答</u></u>**

IV. (a) Draw the structure of A to F in the following reaction.

(12%)

(b) Explain why C won't give D or D' on treatment with alc. KOH.

(2.%)

Cyclohexene 
$$\xrightarrow{NBS}$$
 A  $\xrightarrow{Br_2}$  B + C

B  $\xrightarrow{alc. KOH}$  D + 1,3-dibromocyclohexene (D')

D  $\xrightarrow{Br_2}$  E + F

V. Give the structures for compounds G to K in the following reactions.

(10%)

VI. Choose a correct answer for each of the following questions.

(40%)

- 1. Calculate the formal charges on the carbons in a carbene, a carbocation, and a radical.
  - (1) -2, +1, 1
  - (2) -1, +2, 0
  - (3) 0, +1, 0
  - (4) -2, +1, 0
- 2. How many grams of cyclohexanol must be reacted to produce 20 g of cyclohexene, if the % yield is 54%? The equation is  $C_6H_{11}OH \rightarrow C_6H_{10} + H_2O$ .
  - (1) 40 g
  - (2) 45 g
  - (3) 50 g
  - (4) 55 g

| 八 | 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生                                                                | 招生考試          |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| 目 | 目 <u>有機化學</u> 科號 <u>0802、1102 共 6</u> 頁第 <u>3</u> 頁 <u>*請在試卷【答案</u> :                             | 卷】內作答         |  |  |  |  |
|   | •                                                                                                 |               |  |  |  |  |
|   | 3. Determine the oxidation number of the underlined atom in each of the following species.        |               |  |  |  |  |
|   | CO <sub>2</sub> , PCl <sub>3</sub> , N <sub>2</sub> O <sub>5</sub> , SO <sub>3</sub> <sup>2</sup> |               |  |  |  |  |
|   | (1) 0, +3, +5, +4                                                                                 |               |  |  |  |  |
|   | (2) +4, -3, -5, +4                                                                                |               |  |  |  |  |
|   | (3) +4, +3, +5, +6                                                                                |               |  |  |  |  |
|   | (4) +4, +3, +5, +4                                                                                |               |  |  |  |  |
|   | 4. Compare the acid strength of the following compound (from smallest to the                      | largest).     |  |  |  |  |
|   | I. CH3COOH II. Cl3CH2COOH III. Cl2CH2COOH IV. F3CH2COOH                                           |               |  |  |  |  |
|   | (1) I, II, III, IV                                                                                |               |  |  |  |  |
|   | (2) IV, II, I, III                                                                                |               |  |  |  |  |
|   | (3) I, III, II, IV                                                                                |               |  |  |  |  |
|   | (4) I, IV, III, II                                                                                |               |  |  |  |  |
|   | 5. Place the three isomeric pentanes in order of increasing stability at room tem                 | perature.     |  |  |  |  |
|   | I. neopentane II. isopentane III. pentane                                                         |               |  |  |  |  |
|   | (1) Ш, Ц, І                                                                                       |               |  |  |  |  |
|   | (2) III, I, II                                                                                    |               |  |  |  |  |
|   | (3) II, I, III                                                                                    |               |  |  |  |  |
|   | (4) I, II, III                                                                                    |               |  |  |  |  |
|   | 6. The specific rotation of a pure enantiomer is +12°. What is its observed rota                  | tion if it is |  |  |  |  |
|   | isolated from reaction with 20% racemization and 80% retention?                                   |               |  |  |  |  |
|   | (1) -2.4°                                                                                         |               |  |  |  |  |
|   | (2) +2.4°                                                                                         |               |  |  |  |  |
|   | (3) -9.6°                                                                                         |               |  |  |  |  |
|   | <b>(4)</b> +9.6°                                                                                  |               |  |  |  |  |
|   | 7. How many stereoisomers of 2,3-butanediol are possible?                                         |               |  |  |  |  |
|   | (i) 2                                                                                             |               |  |  |  |  |
|   | (2) 3                                                                                             |               |  |  |  |  |
|   | (3) 4                                                                                             |               |  |  |  |  |
|   | (4) 5                                                                                             |               |  |  |  |  |
|   |                                                                                                   |               |  |  |  |  |

## 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生招生考試 目<u>有機化學科號 0802、1102 共</u>6 頁第 4 頁 \*請在試卷【答案卷】內作答

- 8. Assuming the absence of any steric hindrance, list the following alkenes in decreasing order of reactivity towards electrophilic addition:
  - I. ClCH2CH=CH2 II. (CH3)2C=CH2 III. CH3CH=CH2 IV. H2C=CHCl
  - (1) II, III, I, IV
  - (2) IV, I, Ⅲ, ∏
  - (3) III, II, IV, I
  - (4) I, IV, II, III
- Analyze the following generalized rate data to derive the rate expression for the reaction:
   RX + Nu: → NuR + :X-

|       | [RX] | [No:-] | rate                   |
|-------|------|--------|------------------------|
| (i)   | 0.10 | 0.10   | 1.2 x 10 <sup>-4</sup> |
| (ii)  | 0.20 | 0.10   | 2.4 x 10 <sup>-4</sup> |
| (iii) | 0.10 | 0.20   | $2.4 \times 10^{-4}$   |
| (iv)  | 0.20 | 0.20   | $2.4 \times 10^{-4}$   |

- (1) rate=k[RX]<sup>2</sup>
- (2) rate=k[Nu:-]2
- (3) rate=k[RX][Nu; ]
- (4) rate=k[RX][Nu:-]2
- 10. Based on the pK<sub>a</sub> values given in parentheses: H<sub>2</sub> (>35), CH<sub>4</sub> (>40), CH<sub>3</sub>OH (17), C<sub>2</sub>H<sub>2</sub> (25), HCN (9), which of the following reaction will not occur?
  - (1) HCCN<sub>2</sub> + CH<sub>3</sub>OH
  - (2)  $C_2H_2 + CH_3Li$
  - (3)  $C_2H_2 + NaH$
  - $(4) C_2H_2 + NaCN$
- Place the following compounds in the order of their relative reactivity with E+.
  - I. p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>COOH II. p-HOOCC<sub>6</sub>H<sub>4</sub>COOH III. p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub> IV. C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>
    - (1) **Ⅲ** > **IV** > **I** > **II**
    - (2) II > I > III > IV
    - (3) I > II > III > IV
    - (4) II > I > IV > III

# 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生招生考試 目<u>有機化學</u>科號 0802、1102 共 6 頁第 5 頁 \*請在試卷【答案卷】內作答

- 12. A 9.6 x  $10^{-5}$  M solution in a 1.0-cm cuvette cell at  $\lambda_{max} = 235$  nm has an absorbance of 1.2. Calculate  $\varepsilon_{max}$  for this transition.
  - (1) 2.45 x 106 M-1-cm-1
    - (2) 1.25 x 10<sup>4</sup> L/mol-cm
    - (3)  $1.25 \times 10^5 \text{ L/mol-cm}$
    - (4) 8 x 10<sup>-5</sup> M/cm
- Which of the following atoms are not NMR active: <sup>32</sup>S, <sup>31</sup>P, <sup>19</sup>F, <sup>16</sup>O, <sup>15</sup>N, <sup>14</sup>N, <sup>12</sup>C, <sup>2</sup>D?
  - (1) 32S, 19F, 16O, 15N, 14N, 2D
  - (2) 32S, 16O, 14N, 2D
  - (3) 32S, 16O, 12C, 2D
  - (4) 32S, 16O, 12C
- 14. Place the following benzyl alcohols in decreasing order of reaction rate with HBr.
  - L C6H5CH2OH IL p-CH3OCH2OH III. p-O2NC6H4CH2OH IV. p-CIC6H4CH2OH
    - (1) I, II, III, IV
    - (2) II, IV, I, III
    - (3) III, IV, II, I
    - (4) II, I, IV, III
- Compare the basicity of following amines.
  - I. CH<sub>2</sub>= CHCH<sub>2</sub>NH<sub>2</sub> II. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> III. HC≡ CCH<sub>2</sub>NH<sub>2</sub>
  - (1) I>II>III
  - (2) II>I>III
  - (3) I>III>II
  - (4) III>I>II
- 16. Which of the following statements about α-amino acid is true?
  - Most natural α-amino acids have S configurations.
  - (2) Most natural α-amino acids have D configurations.
  - (3) All α-amino acid have one chiral center.
  - (4) L-cysteine has the same stereo configuration as L-serine.

#### 八十九學年度 生命科學系及生物技術所 生科乙組及生技乙組碩士班研究生招生考試 目 有機化學 科號 0802、1102 共 6 頁第 6 頁 \*請在試卷【答案卷】內作答

- 17. The side chain residue of an amino acid can be modified chemically, which of the following statements is correct?
  - (1) OH group can be protected by ester and removed by weak alkali.
  - (2) COOH group can be blocked by benzyl and removed by Na in liq. NH<sub>3</sub>.
  - (3) NH2 group can be blocked by Boc and removed by CF3COOH, HBr in HOAc.
  - (4) Imidazole group can be blocked by benzyl ester and removed by weak alkali.
- 18. Which two functional groups are present in typical carbohydrates?
  - (1) OH and COOH
  - (2) CH<sub>3</sub> and OH
  - (3) OH and C=O
  - (4) C=O and COOH
- 19. Which of the following reactions does not involve carbon-carbon bond formation?
  - (1) Grignard
  - (2) Friedel-Crafts
  - (3) Aldol condensation
  - (4) Pinacol rearrangement
- 20. Which of the following reactions does not involve cleavage of carbon-carbon bond?
  - (1) Hofmann degradation
  - (2) Diels-Alder
  - (3) ozonolysis
  - (4) Cope rearrangement