國 立 清 華 大 學 命 題 紙

. 生命科學系..

· 分生数甲,生兽白甲乙

八十七學年度__生物技術所__系(所)___*、2__组碩士班研究生入學考試

科包 生物化學

硕士班人学考試生物化學試題

1. 單還題(55%),每題一分

- 1. 下列分子那一個不是 gluconeogenesis 的主要 precursors ? (1) propionate (2) glyceral (3) fatty acid (4) lactate ·
- 2. 下列那一個 enzyme 不出現在 gluconeogenesis 的 pathway 中?(1) pyruvate carboxylase (2) hexokinase (3) fructose-1,6-bisphosphatase (4) phosphoglucose isomerase •
- 3. 下列分子那一個直接參與 glycogen biosynthesis ? (1) UDP-glucose (2) CDP-glucose (3) ADP-glucose (4) GDP-glucose。
- Glycogen 中分支的部位是那一種 linkage? (1) α(1→4)(2) α(1→6)(3)β(1→4)(4)
 β(1→6)。
- 在 erythrocyte surface 上決定血型的 antigen 是一種 (1) phospholipid (2) carbonhydrate (3) cholesterol (4) glycoprotein。
- 6. 光合作用的 light reaction 在 chloroplast 的那一個部位進行?(1) inner membrane (2) thylakoid membrane (3) stroma (4) coupling factor。
- 7. 光合作用所釋放出來的 Q2是來自於 (I) H2Q (2) CQ2(3) [CH2Q] (4) HSQ5.
- 8. 光合作用中的 reaction center 是什麼分子組成的? (1) protein (2) plastoquinone (3) pheophytin (4) chlorophyll。
- 9. 葉綠素分子最會吸收下列那一個波長的光 (1) 320 nm (2) 540 nm (3) 680 nm (4) 820 nm。
- 10. 光合作用的 electron transport system 中,要產生一分子的 O₂ 至少需要幾個 photon?(1)2(2)4(3)8(4)12·
- 11. 光合作用中分解 H₂O 的機構中含有 (1) Fc (2) Cu (3) Mg (4) Mn·
- 12. Calvin cycle 中第一個接受 CO₂ 的分子是 (1) ribose-1,5-bisphosphate (2) ribulose-1,5-bisphosphate (3) glyceraldehyde-3-phosphate (4) ribose-5-phosphate •
- 13. C₄ plants 具有濃縮 (1) CO₂ (2) O₂ (3) sucrose (4) H₂O 的能力。
- 14. 下列分子何者不是 lipid 的一種 (1) cholesterol (2) phosphatidylcholine (3) estrogens (4) vitamin C ·
- 15. 從 liver 運送 cholesterol 到各 tissues 的 lipoprotein 是 (1) very low-density (2) low density (3) intermediate-density (4) high-density ·
- 16. 能攜帶 fatty acid 從 cytosol 進入 mitochondria 的分子是 (1) cocnzyme A (2) carnitine (3) acetate (4) biotin。
- 17. Fatty acid oxidation 時,一般每次切下幾個碳?(1) 1 (2) 2 (3) 3 (4) 4。
- 18. Ketogenesis 在細胞的何處進行?(1) cytosol (2) peroxisome (3) lysosome (4) mitochondria。

國 立 清 華 大 學 命 題 紙

八十七學年度<u>生物技術所</u>系(所)<u>ザン</u>組碩士班研究生入學考試

科自 生物化學 科號 1101,1201 共 **8** 頁第 2 頁 **請在試卷【答案卷】內作答**

- 19. 從 phosphatidylserine 上脱去一個 CO₂ 後會產生 (1) phosphatidylethanolamine (2) phosphatidylcholin (3) phosphatidylinositol (4) phosphatidylglycerol。
- 20. Bile acids 的 precursor 是一種 (1) phospholipid (2) eicosanoid (3) steroid (4) sphingolipid ·
- 21. 下列那一個分子不參與 redox reaction ? (1) ATP (2) quinone (3) NADP* (4) Fe-S。
- 22. 在一個 redox reaction 中·如 standard redox potential change 是 0.1 V·則該 teaction 之 standard free energy change 應是 (1) 4.3 (2) 9.6 (3) 12.3 (4) 16.5 kJ/mole。
- 23. 在 electron transport system 中下列那一個分子不會擔任 mobile carrier? (1) chlorophyll (2) quinone (3) cytochrome (4) plastocyanin ·
- 24. 加入 uncoupler 到 mitochondria 或 chloroplast · 下列那一種過程不會被抑制?(1) ATP synthesis (2) H⁺ gradient formation (3) electron transport (4) membrane potential development ·
- 25. Amylose 被水解後不會產生 (1) glucose (2) maltose (3) maltotriose (4) dextrin ·
- 26. 許多人喝牛奶奶到不適是因為缺乏 (1) amylase (2) lactase (3) galactosidase (4) maltase。
- 27. A 5-carbon ketose 具有幾個 stereoisomers? (1) 4 (2) 8 (3) 16 (4) 32。
- 28. 下列那一個分子是 ketose? (1) fructose (2) glucose (3) galactose (4) mannose ·
- 29. pK, of Tris(hydroxymethyl)aminomethane 是 (1) 6.2 (2) 7.6 (3) 8.3 (4) 9.2 ·
- 30. 通常在動物細胞中的離子濃度是 (1) Na' 低 K' 高 (2) Na' 高 K' 低 (3) Na' 和 K' 都高 (4) Na' 和 K' 都低。
- 31. Chloroplast 的 cytochrome bf complex 中所含 cyt b; cyt f 的比例是 (1) 2:2 (2) 1:2 (3) 1:1 (4) 2:1 -
- 32. 在 retina 中的 rod cells 含能感光的分子 retinal·Retinal 在黑暗中以什麽形態存在? (1) 7-cis (2)11-cis (3) all-trans (4) 13-cis。
- 33. 在 fatty acid biosynthesis 中會用到 (1) NADPH (2) FADH 2 (3) NADH (4) FMNH,。
- 34. 光合作用的 electron transport system 中電子傳遞最慢的步驟是 (1) pheophytin→Q_A (2) plastocyanin→P700 (3) plastoquinonc→cytochrome f (4) ferredoxin→NADP*。
- 35. Electron spin resonance 很少會用來採測 (1) electron transport (2) protein synthesis (3) membrane fluidity (4) enzymatic reaction。

		立	清 生命:	華 科學系。	大	*	命 	題	紙
	/\-	ト七學年度_		技術所	系 (所	→ 全	·唇短する <u>と 1</u> 程(頂土班研	究生入學考試
科目	生物	勿化學	科	0801,100 ∰ 1101,120		真第 3	_ 頁 ' <u>訓</u>	在試卷,	【答案卷】內作答
36.	Which of	the following	z amino a	1301 cids is no	v aromatic	·?			
(1)		·	-						
(2)	F								
(3)	T								
(4)	N								
(5)	none of th	e above							
3 7.	from the co	on of R, I and olumn with a column with a co	an increas ld elute fi	sing salt () rom the co	NaCI) gra	dient, wha	t would b	e the orde	
(1)	R, L D								
(2)	R, L D								
(3)	D, 1, R								
(4)	D, R, I								
(5)	R, D, 1								
				ch make a	up such se	condary st	tructures	as an cc-he	elix, are formed
	-	ntly as a reso							
		ular hydroge		8					_
		ic interaction							
		ic interactio							
		ular hydroge		ğ					
(5)	all of the a	bove interac	tions						
39 .	The inform	iation neede	d for the :	structure (of a protei	n is contai	ned in its	+	
(I)	amino acid	compositio	n						
(2)	primary st	nucture							
(3)	quaternary	structure							
(4)	tertiary stri	ucture							
(5)	secondary	structure							
40.	Which of t	he following	statemer	nts concer	ning the E	dman deg	radation :	method ar	e not ture?
(1)	Phenyl ison	thiocyanate i	is coupled	l to the an	nino-t erm i	inal residu	e.		
(2)	Under mid	ly acidic cor	ditions, t	he modifi	ed peptide	is cleave	d into a c	yelie deri	vative of the
,	terminal ac	nino acids a	nd a short	-ended pe	eptide.				

八十七學年度 生物技術所 系 (所) ^{1、2} 組碩士班研究生入學考試 2801,1001 生物化學 科號 (101,1201 共 8 頁第 4 頁 1個在試卷【答案卷】內作答

- 科目 生物化学 科號 (101,1201 共 8 頁第 4 頁 "請在試卷【答案卷】內作3

 (3) Once a PTH amino acid is separated from the original peptide, the released PTH-amino acid can
 - (3) Once a PTH amino acid is separated from the original peptide, the released PTH-amino acid can be identified by high-pressure liquid chromatography and the N-terminal residue of the degraded peptide is blocked.
 - (4) If a protein has a blocked amino-terminal residue, it cannot react with phenyl isothiocyanate.
 - 41. Which of the following statement about the peptide bond is true?
 - (1) The peptide bond is planar because of the partial double bond character of the bond between the carboxyl carbon and the nitrogen.
 - (2) There is relative freedom of the rotation of the bond between the carboxyl carbon and the nitrogen.
 - (3) The hydrogen that is bonded to the nitrogen atom is cis to the oxygen of the carboxyl.
 - (4) There is no freedom of rotation around the bond between the \alpha-carbon and the carboxyl carbon.
 - 42. The thermodynamics of folding of a soluble protein indicates that the single largest contribution to the stability of a folded protein is
 - (1) internal interactions from intramolecular side group interactions
 - (2) conformational entropy
 - (3) hydrophobic effect
 - (4) None of the above
 - 43. A Ramachandran plot shows
 - (1) the amino acid residues that have the greatest degree of rotational freedom
 - (2) the sterically allowed rotational angles between any specific R groups in a peptide and the peptide backbone
 - (3) the sterically limited rotational angles (domains which phi and psi are allowed in the peptide backbone
 - (4) the angles that are allowed about the bonds connecting the amide nitrogen
 - (5) none of the above statements are correct
 - 44. Which of the following groups of amino acid residues can be phosphorylated?
 - (1) H, W, and S
 - (2) S, Y and T
 - (3) D, E, and C
 - (4) V, A, and G
 - (5) None of the above

		立	清 _ 4 金 1	華	大	學 分生短 平 接	命 _	題	紙	
•	——— Д÷	- -七 學 年度						真土班研究	2生入學考	it
₩B		6化學							答案卷】内	
45 Ou	ateman	y structure is								
		shape of a p			inch of di	C (DIII)	D .			
		the seconda			ractions					
		teins with o		•						
		ich as myogl	*		a heme gr	oup				
		orientation			_		tide in a r	nultisubur	ut protein	
45							_			
_	_	the following odopsin?	g features	s is not a p	property o	f the transi	membrane	e integral (protein	
		annel made	up of seve	en α-helic	es which	cross the r	nembrane	:		
		ular integral	•							
		ut a light-dr	-	on transpo	भा					
(4) it l	as a sin	gle β-sheet	which spa	ans the les	ngth of the	plasma π	nembrane			
(5) it i	s not sol	luble in wat	er							
47 Hy	drophol	bicity plot fo	or anion c	hannel of	the erythi	ocyte mer	nbrane is	utilized to	reveal	
(1) am	ino acid	residues th	at may be	highly n	odified					
(2) am	ino acid	residues the	at may be	directly i	invotved i	n facilitate	ed transpo	nt		
(3) str	etches o	famino acid	l residues	that mak	e up hydro	ophobic re	gions and	may be d	irectly	
ass	ociated	with the lipi	id bilayer							
(4) am	ino acid	ls that are hy	/per-react	tive due to	their loca	ation.				
(5) no	ne of the	e above are o	correct							
48. In	the list b	elow, which	h amino a	cid is the	most effe	ctive grou	p in bring	ing about	general acid	-
bas	e cataly	sis in enzyn	nes?							
(1) asp	aragine									
(2) ser	ine									
(3) his	tidine									
(4) lys	ine									
(5) try	ptophan									
49, W	hich of t	he following	g stateme:	nt is char	aceteristic	of a trains	ition state	analog?		

(1) it has the same three-dimensional arrangement of atoms as the product

(3) it binds more strongly to the active site than does the putative substrate

(4) it has the same three-dimensional arrangement of atoms as the substrate.

(2) it reacts faster than does the putative substrate

		Ϊ	清 _生命科	華 坐系_	大	季	6	35	離	
	/\+·	七學年度	生物技		系(所)	分生粗甲,生 甲、	ቔ無する ̄ ̄	員士班研究	究生入學考試	
№	生物	化學	₹ 7 32	0801,10 1101,12	or 01.共 <u>8</u>	頁第 6	 	在試卷	【答案卷】內作答	
(5) is	date ton ei.	de upon im	t eract ion W	- 1301 inh the 1	active site					
50 V	Vhich of th	e following	g statement	ts is not	a feature o	f <i>k_/K_?</i>				
			_		mparison of		lytic effic	iency of e	nzymes	
			•		a substrate		-	•		
	ts upper lin s 10° to 10°		k _a ∕K _a value	e is fixe	d by the dif	fusion-co	ntrolled i	imit for re	eactions, which	
(4) it	correspon	ds to a sec	ond-order t	rate con	stant					
_			interaction	_	Watson-Crie	ek AT bas	se pair in	volve whi	ch of the	
(1) N	-1 and the	amino gro	up on C-6							
(2) N	I-1 an N-3									
(3) N	₹7 and ami	no group o	on C-6							
(4) N	N-7 and C-7	7								
(5) N	1-9 and N-3	3								
	Which of th m?	e following	g compone	nts of D	DNA is resp	onsible fo	or the abs	orhance b	and at 250-270	
(1) b	ases, pento	ses								
(2) b	ases									
(3) b	ases and po	entoses								
(4) b	ases and pl	hosphate								
(5) b	ases, pento	ses, and pl	hosphate al	l contril	bute					
53.7	The human	genome ha	as 3 × 10° b	p of Di	NA. If it v	vere one o	continuou	s molecui	le and extended	
such	that each r	nucleotide :	was arrasig	ed acco	rding to the	model p	roposed b	y Watson	and Crick, what	
woul	id be the en	id-to-end d	listance?							
(1) 1	meter									
(2) 1	centimete	r								
(3) 1	0 meters									
(4) 1	0 centimet	er								
(5) I	0ច វេ ភា						•			

54. The dominant conformation of DNA found in the cell is the B form of DNA. Which of the

following characteristics is associated with the B form of DNA?

立 華 大 銋 酒

系 (所)

生物技術所 八十七學年度

₩・乙 組碩士班研究生入學考試

生物化學 科目

科號 1191,1201 共 8 頁第 7 頁 :請在試卷【答案卷】內作答

- (1) the sugars are located in the interior of the double helix
- (2) the distance between base pairs along the axis of the helix is 0.68 nm
- (3) the major and minor grooves are readily apparent
- (4) the planes of the bases make about a 20 degree angle with the helical axis
- The atoms or groups in guanine exposed in the major groove are
- (1) C-8, N-7, and the amino group on C-6
- (2) N-3 and the amino group on C-2.
- (3) C-8, N-7, C-5, and the carbonyl group at C-6
- (4) C-4, C-5 and the amino group on C-6
- II. (10%) Suppose you are trying to purify and characterize the properties of a recombinant human hemoglobin produced by Escherichia coli.
- 1. Please describe all the known properties of human hemoglobin including the molecular weight, pK values, absorption coefficients, spectroscopic characteristics and other biochemical properties. How can you find all these properties if you do not know those properties?
- Describe the approach to purify the recombinant hemoglobin protein produced by Escherichia coli. You have to include (i) the principle of your purification method and (ii) your experimental procedures step by step. Please also describe the way to identify this protein.

III. (15%) Isotope Labeling Experiments:

- 1. Assume the citric acid cycle were completely block by flurocitrate. In each case draw the structure of citric acid that would accumulate showing the position of the label. All of the citric acid must come from the substrate.
 - a. Pyruvate + ¹⁴CO₂
 - b. Pyruvate-2- 14 C + CO₂
 - α-Ketoglutarate-2-¹⁴C
- 2. Draw the structures of ATP and CTP, numbering the atoms in the bases, and indicate the principal positions in each which would become isotopically labeled by incubation of cells with the followings.
 - "N-Aspartate
 - **C-Aspartate (uniformly labeled)
 - 14C-Glycine (uniformly labeled)

科目 生物化學 科號 1101,1201 共 **8** 頁第 **8** 頁 **請在試卷【答案卷】內作答**

IV (10%) Taking into account reducing equivalents (1 NADH = 3 ATP; 1 FADH₂ = 2 ATP), what would be the net high energy phosphate change (gain or loss of ATP) to a a cell for the following: Show calculation summaries for full credits.

- The complete oxidation of one mole of glycerol
- b The conversion of two moles of acetyl-CoA into one mole of succinate.
- V. (10%) Many cell signalings (e.g. from binding of glucagon to activation of phosphorylase in liver cells) are transduced by pathways involved PKA.
 - a. What is PKA? Please give the full name (correct spelling required) and briefly explain.
 - b. Please the complete signaling pathway from binding of glucagon to activation of phosphorylase in liver cells (please put down ALL intermediate steps).