分生組內

 八十五學年度 生命科學 系(所) 生醫組內 組碩士班研究生入學考試

 科號 1102
 共 2 頁第 1 頁 *精在試卷【答案卷】內作答

(20%) 1 Among the following Nobel Price winners, choose 4 cases and describe their accomplishments in details •

1901 : W. K. Rontgen 19

1915 : W. H. Bragg and W. L. Bragg 1935 : J. Chadwick

1921 : A. Einstein

1938 : E. Fermi

1957 : C. N. Yang and T. D. Lee

Hint : You may choose items from the following \sim

discovery of X-ray .

discovery of spontaneous radioactivity .

discoveries regarding the laws governing the blackbody radiation >

analysis of crystal structure using x-rays .

discovery of the law of the photoelectric effect .

discovery of the wave nature of electrons >

discovery of the neutron >

discovery of nuclear reactions brought about by slow neutrons >

discovery of parity violation o

- (10%) 2 Doppler effect is the phesnomenon that the frequency of a wave increases/decreases as the source approaches/recedes the observer. A driver was stopped by the policeman for passing the intersect at the red light, yet the driver claimed that he saw a green light. According to Doppler effect, do you think the driver should get a ticket of speeding instead?
- (20%) 3 .Give two examples of modern technology applied to biological researches, Explain the physics principles behind the technology o
- (20%) 4 (a)Derive the expression for energy levels of a hydrogen atom of
 - (b) Find the wavelength of the Balmer series, which is the transition between an initial state of $n \ge 3$ and a final state of n=2. Give the values of $3 \to 2$ and $4 \to 2$ in units of $\mathring{A} \circ$
 - (c) Suppose we replace the electron of a hydrogen atom by a muon ($q_{\nu} = q_{e}$, and $m_{\nu} = 207 \text{ m}_{\bullet}$), what are the wavelengths of 3 \rightarrow 2 and 4 \rightarrow 2 transitions?

• '	八十五學年度	生命科學	
科目	近代物理	科號 1102 科號 1402	 <u>\$</u>

(30%) 5.A particle of mass m and energy E is moving in one dimensional potential well discribed by

$$V(x) = \begin{cases} 0 & \text{where } -a/2 < x < a/2 \\ \infty & \text{othewise} \end{cases}$$

- (a)Derive the expression for \(\psi(x, t)\);
- (b)Calculate $\leq x^2 >$ and $\leq x >$, determine
- (c)Calculate <p2> and •

Name	Symbol	Value	Unita
Speed of light	c	2.99792 × 10 ⁸	m/sec
Vacuum permittivity	£g	8.85419×10^{-12}	coul/volt-m
Planck's constant	ħ	6.62608×10^{-54} =4.13567 × 10 ⁻¹⁵	joule-sec eV-sec
	$\hbar = h/2\pi$	1.05457×10^{-34} =6.58212 × 10 ⁻¹⁴	joule sec eV-sec
Elementary charge	e	1.60218×10^{-19}	coul
Electron mass	$m_{\rm e}$	9.10939×10^{-31}	kg
Avogadro's number	N_A	6.02214×10^{23}	mol ⁻¹
Boltzmann's constant	k	1.38066×10^{-23} =8.61739 × 10 ⁻⁵	joule/Kelvin eV/Kelvin
Atomic mass unit	u	1.66054×10^{-27}	kg

 $h = 1.054 \times 10^{-27}$ erg-sec (Planck's constant divided by 2π)

 $\epsilon = 4.80 \times 10^{-10}$ esu (magnitude of electron charge)

 $m = 0.911 \times 10^{-27} \text{ g (electron mass)}$

 $M = 1.672 \times 10^{-11} \text{ g (proton mass)}$

 $a_0 = \hbar^2/me^2 = 5.29 \times 10^{-6}$ cm (Bohr radius)

e2/a. = 27.2 ev (twice binding energy of hydrogen)

 $c = 3.00 \times 10^{10}$ cm/sec (speed of light)

 $\hbar c/e^2 = 137$ (reciprocal fine structure constant)

 $eh/2mc = 0.927 \times 10^{-20} \text{ erg/oersted (Bohr magneton)}$

 $mc^2 = 5.11 \times 10^4$ ev (electron rest energy)

Mc2 = 938 Mev (proton rest energy)

1 ev = 1.602 × 10⁻¹² erg

Wavelength associated with 1 ev/c = 12,400 Å

Temperature associated with 1 ev = 11,600°K