- (60%) Part 1. Only one answer is correct for each following question. 3 points will be given for a correct answer, 3 points will be deducted for an incorrect answer and no point for no answer.
 - () 1. What is the quantum mechanical operator for the kinetic energy? (1) $-(\hbar^2/m)\frac{\partial^2}{\partial g^2} (2) i\hbar \frac{\partial}{\partial g} (3) i(\hbar^2/m)\frac{\partial^2}{\partial g^2} (4) \frac{\hbar}{i}\frac{\partial}{\partial g}$
 - () 2. What are the energy levels for a rigid diatomic rotor? (1) $(J+1/2)\frac{\hbar^2}{2I}$ (2) $J(J+1/2)\frac{\hbar^2}{2I}$ (3) $J(J+1)\frac{\hbar^2}{2I}$ (4) $(J+1)(J+2)\frac{\hbar^2}{2I}$ (*I* is the moment of

inertia)

- () 3. If $\langle m|\Omega|n\rangle \equiv \int \psi_m^* \Omega \psi_n d\tau$, what is the most general definition of hermiticity? (1) $\langle m|\Omega|n\rangle = \langle n|\Omega|m\rangle^*$ (2) $\langle m|\Omega|n\rangle = \langle n|\Omega|m\rangle$ (3) $\langle m|\Omega|n\rangle = \langle m|\Omega|n\rangle^*$ (4) $\langle m|\Omega|n\rangle = -\langle n|\Omega|m\rangle$
- () 4. Is the operator id / dx Hermitian? (1) yes (2) no.
- () 5. What is the usual length for a hydrogen bond? (1) 1.0 Å (2) 1.20 Å (3) 2.0 Å (4) 3.5 Å.
- () 6. What are the energy levels for a harmonic oscillator? (1) $n\hbar\omega$ (2) $n\hbar\omega$ (3) $(n+1/2)\hbar\omega$ (4) $(n+1/2)\hbar\omega$
- () 7. How many normal modes of vibration for H_2O ? (1) 3 (2) 4 (3) 5 (4) 6
- () 8. What is the degeneracy of a rotational level J for a spherical top molecules (1) 2J+1 (2) $(2J+1)^2$ (3) 2J(2J+1) (4) (2J+1)(2J-1)

八十四學年度 生命科學 所 F 組碩士班研究生入學考試 科目 物理化學 科號 「904 共 5 頁第 2 頁 #讀在試養【答案卷】內作答

- () 9. The pK_a value of H₂O is around 15. What is the sign of the corresponding free energy ΔG^0 ? (1) $\Delta G^0 > 0$ (2) $\Delta G^0 < 0$ (3) $\Delta G^0 = 0$.
- () 10. Which of the following relationships between temperature T and the velocity ν is true? (1) $\langle \nu \rangle \propto T$ (2) $\langle \nu^2 \rangle \propto T$ (3) $\langle \nu \rangle \propto T^2$
- () 11. The rate constant in Transition State Theory is written as $A\exp(-\Delta G^*/kT)$, where ΔG^* is the activation free energy, k_B the Boltzmann constant and T temperature what is the value of the frequency factor A at $300^{\circ}\mathrm{K}$? (1) 6×10^6 s⁻¹ (2) 6×10^8 s⁻¹ (3) 6×10^{10} s⁻¹ (4) 6×10^{12} s⁻¹
- () 12. For the molecule CO, which of the formulae describes the charge distribution properly? (1) $C^{-\delta}O^{-\delta}$ (2) $C^{+\delta}O^{-\delta}$.
- () 13. What is quantum mechanical operator for position q if the operator for the momentum p is taken to be multiplication by p? (1) $i\hbar(d/dp)$ (2) $-i\hbar(d/dp)$ (3) $\frac{i}{\hbar}(d/dp)$ (4) $-\frac{i}{\hbar}(d/dp)$
- () 14. When liquid water is vaporized at 100°C and 1 atm, which of the following quantities is zero. (1) ΔE (2) ΔH (3) ΔG (4) ΔA
- () 15. For an irreversible cycle, $\oint \frac{dq}{T}$ is always (1) > 0 (2) = 0 (3) < 0.
- () 16. For an ideal gas, which of the following is not true? (1) PV = nRT (2) $(\partial H / \partial V)_T \neq 0$ (3) $(\partial C_V / \partial V)_T = 0$.
- () 17. What is the point group for C₂H₆ (in the eclipsed conformation)?
- $(1)\ D_{3d}\ (2)\ D_{3h}\ (3)\ D_{3d}\ (4)\ D_{2h}$

國 立 清 華 大 學 命 題 紙

八十四學年度 生命科學 所 甲 組碩士班研究生入學考試 科目 物理化學 科號 1914 共 5 頁第 3 頁 *請在試卷【答案卷】內作答

- () 18. What is the point group for anthracene CCC ? (1) $C_{\rm esc}$ (2) $C_{\rm 2h}$ (3) $C_{\rm 2v}$ (4) $D_{\rm 2h}$
- () 19. What is the force between the particles in an ideal gas? (1) none (2) only attraction (3) only repulsion (4) both attraction and repulsion.
- () 20. What is the value of *RT* at room temperature? (*R* is the gas constant and *T* the temperature) (1) 0.2 cal/mol (2) 0.6 kcal/mol (3) 2.4 kcal/mol (4) 4.8 kcal/mol.

Part 2. (40%) Answer the following questions and show your calculation.

 $R = 8.314 \times 107 \ erg \ deg^{-1} \ mol^{-1} = 1.987 \ cal \ deg^{-1} \ mol^{-1} = 8.314 \ J K^{-1} mol^{-1}$ $h = 6.626 \times 10 \ -34 \ J \ s$

(10) 1. What will be the free energy of forming 1 mol of H₂O at 1000°K if
(a) 10 atm of O₂ and 10 atm of H₂ are reacted to give 0.01 atm of H₂O;
(b) 0.01 atm of O₂ and 0.01 atm of H₂ are reacted to give 10 atm of H₂O?
Is the reaction favored relative to standard conditions in each case?
For part (b), H₂O(g) could be introduced with the reactants to give a high enough product partial pressure.

八十四學年度 生命科學 所 甲 組碩士班研究生入學考試 科目 物理化學 科號 111 共 5 頁第 4 頁 # 議在試券【答案卷】內作答

(20) 2. The stoichiometric equation for a reaction is

$$A + B ---> C + D$$

The initial rate of formation of C is measured with the following results:

initial concentration of B (M)	initial rate (Ms ⁻¹)
1.	10-3
1	4×10 ⁻³
2	10-3
	(M) 1

- (a) What is the order of the reaction with respect to A?
- (b) What is the order of the reaction with respect to B?
- (c) Use your conclusions in part (a) and (b) to write a differential equation for the appearance of C.
- (d) What is the rate constant k for the reaction? Do not omit the units of k.
- (e) Give a possible mechanism for the reaction and discuss in words, or give equations to show, how the mechanism is consistent with the experiment.

國 立 清 華 大 學 命 題 紙

八十四學年度	生命科學	_ 所	甲組織	黄士班研究生 》	〉學考試
科目物理化學	科號 1114			頁 *讀在試	卷【答案卷】內作答

(10) 3. Use the figure to decide what color flame would one expect to see if a potassium compound such as potassium chloride is heated in a Bunsen burner flame, given that potassium containing materials emit light of frequency 7.41 x 10 14 sec⁻¹.

Wavelength (Å) 4000			5000 6		6000	poo 7	
	٧	В	G	Υ	0	æ	

V-Violet B-Blue G-Green Y-Yellow O-Orange R-Red