科目: 電磁學 B(3008)

校系所組:交通大學電子研究所(甲組、乙A組、乙B組)

清華大學光電工程研究所

陽明大學生物醫學工程學系 (醫學電子組)

- \(\text{(10\%)}\) Consider a lossless transmission line of real characteristic impedance Z_0 and length I. As shown in Figure 1, the line is driven by a sinusoidal voltage source $v_s(t) = V_0 \cos \omega t$ with an internal resistance of $R_s = 2Z_0$, and terminated by a resister of resistance $\dot{R}_L = 3Z_0$.

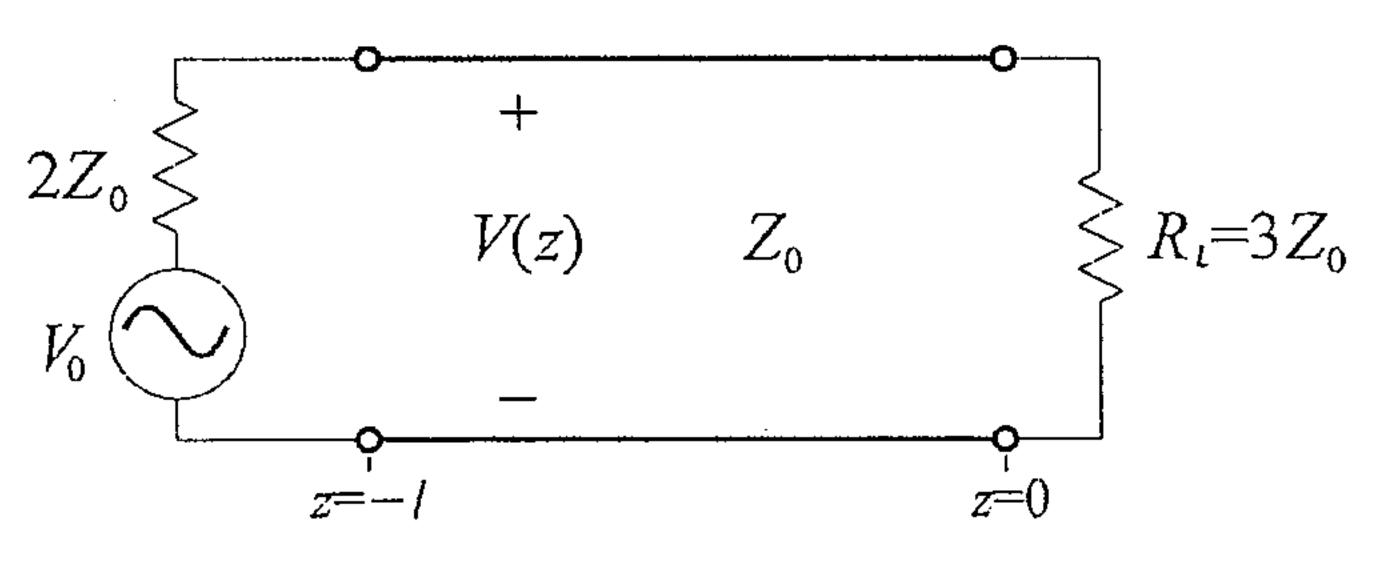


Figure 1.

The voltage phasor across the transmission line $(-l \le z \le 0)$ is written as:

$$V(z) = V^+ e^{-j\beta z} + V^- e^{j\beta z}.$$

where $\beta=\omega/v_p=2\pi/\lambda$ is the propagation constant, v_p is the phase velocity, and λ denotes the wavelength of the voltage wave. If the length of the line is $l=\lambda/3$, sketch the normalized magnitude of voltage phasor $\left|V(z)/V^+\right|$ for $-l \le z \le 0$. Denote the values of $\left|V(z)/V^+\right|$ at z=0, -0.75l, -l, respectively.

 \pm (13%) For a uniform plan wave impinging on a perfect conductor at z=0 (i.e. the x-y plane) at an angle θ , as shown in Figure 2, the incident electrical field can be expressed as

$$\mathbf{E}^{i} = E_{0}[\hat{\mathbf{y}} - j(\hat{x}\cos\theta + \hat{z}\sin\theta)]e^{-jk\ldots}$$

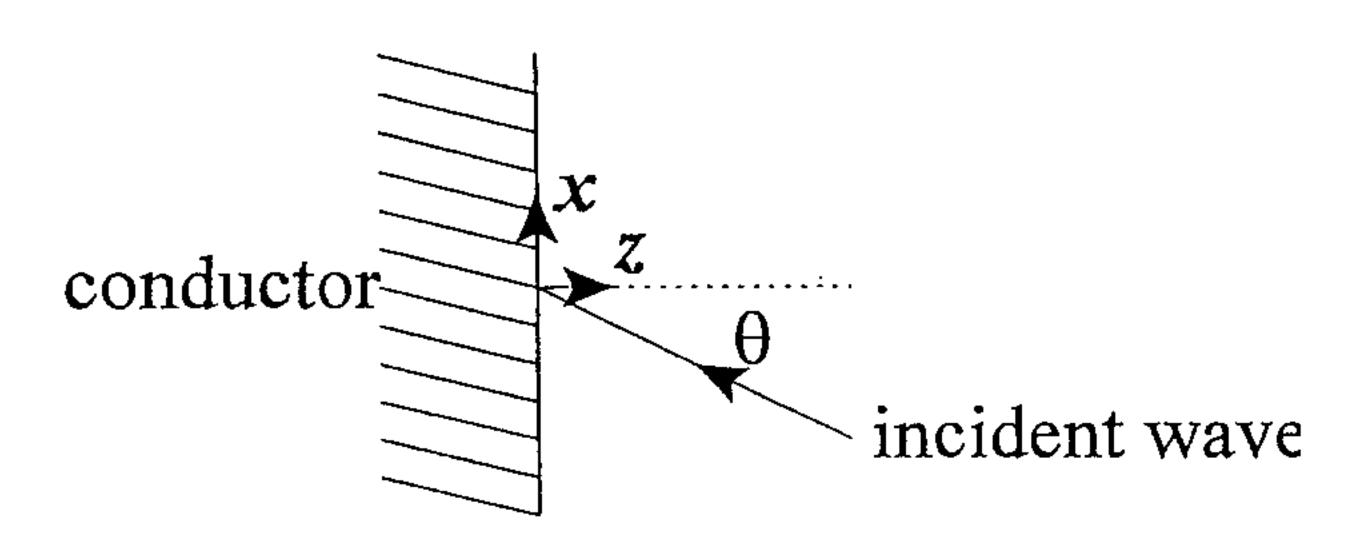


Figure 2.

- (-) Determine whether the incident wave is of perpendicular polarization, parallel polarization, left hand circular polarization, or right hand circular polarization?
- (二)、How about the polarization of the reflected wave? Is it perpendicular polarization, parallel polarization, left hand circular polarization, or right hand circular polarization? Why?

注:背面有試是

台灣聯合大學系統100學年度碩士班考試命題紙

共_4_頁第_2頁

科目: 電磁學 B(3008)

校系所組:交通大學電子研究所(甲組、乙A組、乙B組)

清華大學光電工程研究所

陽明大學生物醫學工程學系 (醫學電子組)

- (三) Please write down the complete mathematical expression for the incident electrical field. i.e., what is in the bracket?
- Ξ \((15%) A lossy dielectric has an intrinsic impedance of $(50\sqrt{3} + j50)\Omega$ at a particular frequency. If the plane wave propagating through the dielectric has the magnetic field component as

$$\mathbf{H} = 5e^{-\alpha x}\cos(\omega t - x)\hat{\mathbf{y}} \quad (A/m)$$

- (-) Find the electric field E. (6 points)
- (二) Determine the skin depth. (9 points)
- 四、(12%) Problem on waveguide
- (-). Is it possible for TE₀ mode to exist in a parallel waveguide? Please explain why in plain language. And how about for the TM₀ mode? What is the difference between TM₀ and TEM mode in this parallel plate?
- (=) For a square waveguide, please write down the fundamental modes (such as TE₁₀, TE₁₁, TE₀₁, TE₁₁, TM₁₁, TM₂₁...) that have the lowest cutoff frequency. (There could be just one such mode or many, and it is you who have to decide.)
- (\equiv) · Is it possible for the TM_{10} mode (not necessarily the fundamental mode) to exist in this square waveguide? Why?
- \pounds (5%) Consider a rectangular waveguide for which a=2b (a and b are the dimensions in the x- and y-directions, respectively). If the cutoff frequency for the TE_{20} mode is 10 GHz, what is the cutoff frequency for TM_{11} mode?
- \Rightarrow (5%) How many degenerate dominant modes exist in a cubic cavity resonator of equal sides (i.e., a = b) = c, where a, b, and c are the dimensions in the x-, y-, and z-directions, respectively)?

注:背面有試題

科目: 電磁學 B(3008)

校系所組: 交通大學電子研究所(甲組、乙A組、乙B組)

清華大學光電工程研究所

陽明大學生物醫學工程學系 (醫學電子組)

- 七、(10%) The index of refraction can be derived from the damped forced oscillator model.
- (-) Write down the mathematical expression for the damped forced oscillator. Explain the meaning of the corresponding terms. (5 points)
- (二)、Use your equation, derive the oscillator phase lag when exactly on resonance. (5 points)
- 八、(10%) Consider the ABCD matrix:
- (一)、Explain the physical meaning of each element within the matrix. (5 points)
- (二)、Assume you have a simple imaging system, what will be the signature of its corresponding ABCD matrix? (5 points)
- 九、(15%) Assuming a round object in the vacuum is incident by light at 1 μ m wavelength with an angle of $\theta = 60^{\circ}$ (Figure 3).

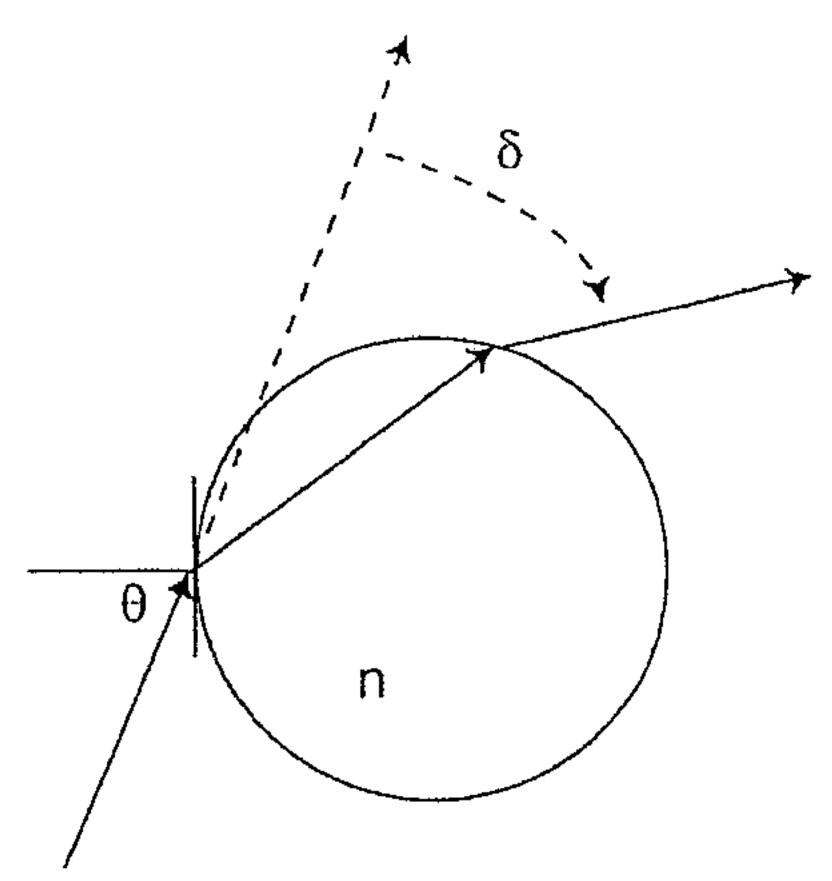


Figure 3. n is the refractive index of the round object.

- (-) If the deviation angle after the light passing through the object is $\delta = 60^{\circ}$, what is the refractive index of the object?
- (=) How long in time does the light travel inside the object if the radius is $R = \frac{300}{\sqrt{3}}$ meter?
- (三)、Assuming the object has a normal dispersion at 1 µm wavelength. Will the time that the light travels inside the object become longer or shorter if the incident light has a lightly longer wavelength? Why?

注·背面有試題

科目: 電磁學 B(3008)

校系所組:交通大學電子研究所(甲組、乙A組、乙B組)

清華大學光電工程研究所

陽明大學生物醫學工程學系(醫學電子組)

 $+\cdot$ (5%) Consider the setup of an interferometer as shown in Figure 4. The light from a point source with a frequency of 300 THz (3×10¹⁴ Hz) is collimated by a collimation lens and separated into two paths in the air (n = 1) by the beamsplitter. The lights in paths 1 and 2 are reflected back to the beamsplitter by mirrors 1 and 2 (M₁ and M₂) with the path lengths of L₁ and L₂, respectively, and overlapped on the screen below. If L₁ = 10 cm and L₂ = L₁ + 5.25 μ m, what will be the phase difference of the lights from path 1 and path 2 on the screen?

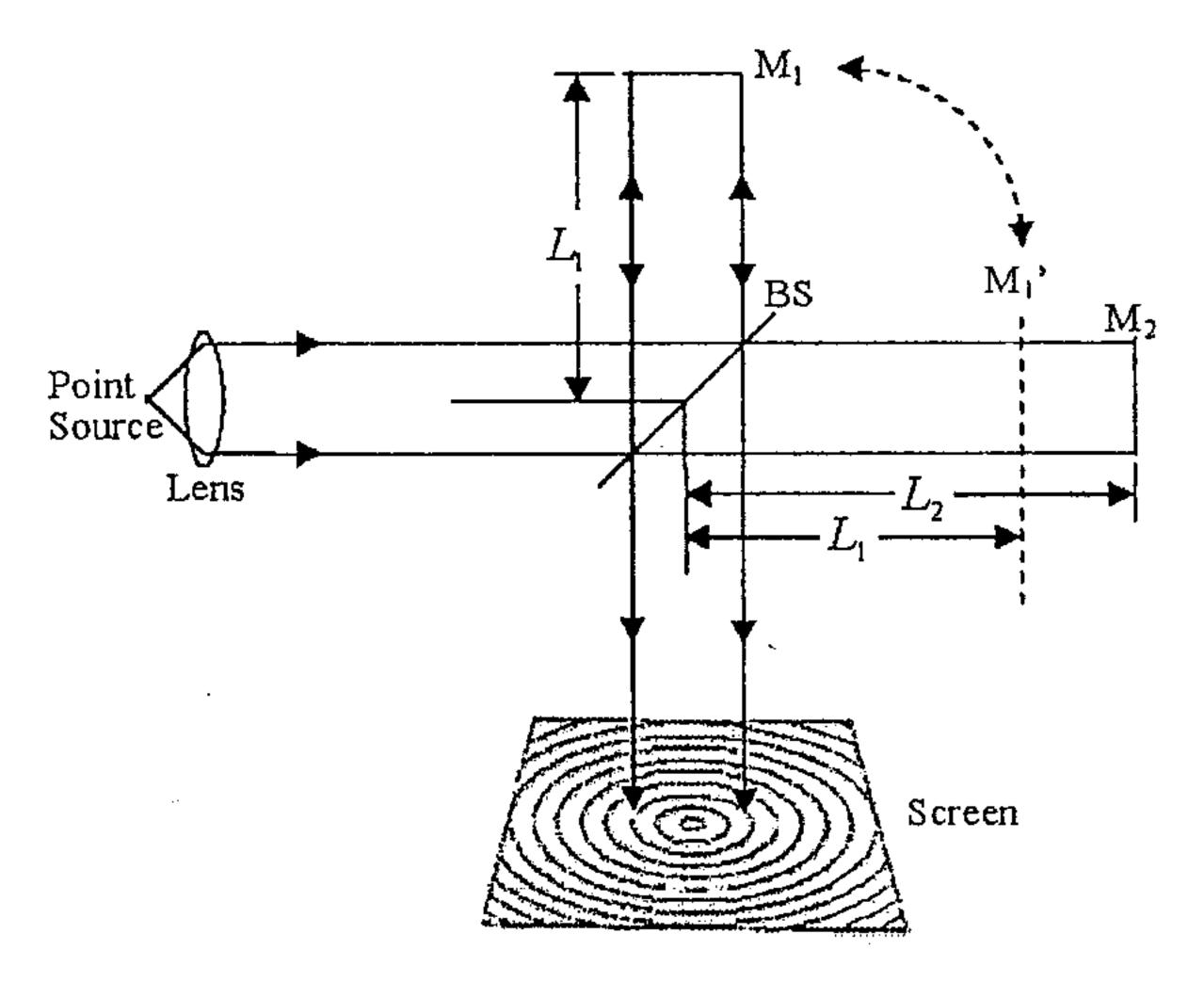


Figure 4. BS: beamsplitter. M: mirror (i=1,2).