九十二學年度_____電子工程研判所___系(所)_____組碩士班研究生招生考試

頁第

*請在試卷【答案卷】

科目

科號

2602

共

1. For the circuit shown in Fig. 1, the transistor parameters are $\beta = 100$, $V_A = \infty$, $V_{BE(on)} = 0.7$ V, and kT/q = 25 mV. Perform the DC analysis, find I_{B1} (2%), I_{C1} (1%), I_{E1} (1%), I_{C2} (1%), I_{E2} (1%), V_{CE1} (2%), and V_{CE2} (2%). Plot the small-signal equivalent circuit of this amplifier (3%). Find out the parameters of g_{m1} (1%), g_{m2} (1%), $r_{\pi 1}$ (1%), and $r_{\pi 2}$ (1%). Calculate the voltage gain v_o/v_s (5%), the input resistance R_{is} (2%), and the output resistance R_o (1%).

2. In the voltage regulator shown in Fig. 2, $V_I = 6.3 \text{ V}$, $R_i = 12 \Omega$, and $V_Z = 4.8 \text{ V}$. If I_Z is in the range of 100 mA $\geq I_Z \geq 5$ mA, find the range for I_L (3%) and R_L (2%). Also, find the power rating for the Zener diode (2%) and R_L (3%).

Use the following device parameters, NMOS $V_{TN} = 1$ V, k' = 100 μ A/V², $\lambda = 0.01$ V⁻¹; PMOS $V_{TP} = -1$ V, k' = 40 μ A/V², $\lambda = 0.01$ V⁻¹ for Problems 3 and 4.

- 3. For the circuit in Fig. 3, M_2 and M_3 are identical PMOSFETs, M_1 with $C_{gs} = 100$ fF, $C_{gd} = 10$ fF, W = 10 μ m, L = 5 μ m. Neglect all other parasitic capacitances. (20%)
- (a) Find the small-signal transfer function of this circuit. (5%)
- (b) Find the dominant poles of this circuit. (5%)
- (c) What is the small-signal voltage gain at low frequency? (5%)
- (d) Sketch the gain and phase Bode plots of this circuit. (5%)

九十二學年度<u>電子工程研判所</u>系(所)<u>組碩士班研究生招生考試 電子學科號 2602</u> 共 3 頁第 ² 頁 *請在試券【答案券】內作答

4. Class-B Output Stage in Fig. 4. (10%)

科目

- (a) Plot the transfer characteristics, $v_O v_I$ for v_I ranges from -5 V to 5 V. Please label the maximum and minimum v_O obtainable. (5%)
- (b) Explain what crossover distortion means and propose a method to reduce crossover distortion in the circuit. (5%)
- 5. The input signal v_{in} applied to the circuit shown in Fig. 5 is a 0-10 V sawtooth having a rise time of 8 μ s and a fall time of 2 μ s. Accurately sketch the resulting output voltage v_o . (15%)
- 6. Determine the frequency of oscillation and the value of R_{c1} for which the circuit shown in Fig. 6 just oscillates. Assuming that Q_1 and Q_2 have h_{ie} (or r_{π}) = 1 k Ω and h_{fe} (or β) = 100. (10%)

Fig. 6

國 立 淸 華 大 學 命 題 紙

九十二學年度<u>電子工程研判所</u>系(所)<u>組碩士班研究生招生考試</u> 科目<u>電子學</u>科號<u>2602</u>共<u>3</u>頁第<u>3</u>頁<u>*講在試卷【答案卷</u>】內作答

- 7. A noninverting amplifier shown in Fig. 7 is constructed with $R_2 = 100$ Ω and R_f adjustable. The op amp open-loop gain is $A_{OL}(s) = 10\alpha^3/[(s+\alpha)(s+2\alpha)^2]$.
- (a) Find the value of R_f that will just place one of the closed-loop amplifier poles at $s = -3\alpha$. (5%)
- (b) For the value of R_f chosen in part (a), what are the locations of the other two amplifier poles? (5%)

Fig. 7