八十九學年度 電子工程系(所)組	碩士班研究生招生考試
科 <u>国態電子元件 科號 4605 共 2 頁第 1 頁</u>	*請在試卷【答案卷】內作答
1. A silicon sample maintained at 300 °K is doped with 1×10^{17} cm ⁻³ boro Assuming the intrinsic carrier concentration is 1×10^{10} cm ⁻³ at 300 °K.	on and 1×10^{16} cm ⁻³ arsenic.
(a) Write down the charge neutrality condition.	' (2%)
(b) Write down the mass action law for the product of electron and hole equilibrium. (Assuming Boltzmann approximation is valid)	e concentration at thermal (2%)
(c) What is the electron concentration n and hole concentration p ?	(2%)
(d) What is the type $(N \text{ or } P)$ of this silicon sample?	(2%)
(e) What is the electron concentration n and hole concentration p if the 1×10^8 cm ⁻³ boron and 1×10^6 cm ⁻³ arsenic?	silicon sample is doped with (2%)
2. The electron mobility in the channel of modern 0.25 μ m n -channel MO Assume the channel electric field is around 1000 V/cm and the effective conduction band is m_0 . Assuming the thermal velocity v_{th} is 1×10^7 cm/s questions.	e mass of the electron in
(a) What is the drift velocity?	(5%)
(b) What is the mean free time τ between collisions?	(5%)
(c) What is the mean free path /between collisions?	(5%)
3. Answer the following question briefly.	
(a) What is the dominant leakage current mechanism in reverse biased maintained at room temperature?	silicon pn junction diodes (5%)
(b) Sketch the common emitter current gain β as a function of collector transistor and explain the behavior of β at low collector current I_c .	r current I_c for a bipolar junction (5%)
(c) Sketch the transfer characteristics for both n-channel and n-channel	enhancement MOSFETs operated

(5%)

in saturation region

- 4. Assuming there are negligible interface states, answer the following questions.
 - (a) Draw the energy band diagram for a metal to *n*-type semiconductor junction. Assume that the work function of the metal is larger than that of the semiconductor, that is: $q\phi_n > q\phi_s$. $q\phi_n$ is the work function of metal and $q\phi_s$ is the work function of semiconductor. $q\chi$ is the electron affinity. Find out the Schottky barrier height and the contact potential (i.e. the built-in potential). (5%)
 - (b) Similarly, draw the energy band diagram for a metal to p-type semiconductor junction. Assume $q\phi_{\rm in} < q\phi_{\rm s}$. Find out the Schottky barrier height and the contact potential (i.e. the built-in potential). (5%)
- 5. An *n*-channel MOSFET has the following properties: the gate oxide thickness $t_{ox} = 1000 \text{ Å}$, the oxide interface charge $Q/q = 5 \times 10^{10} \text{ cm}^{-2}$, the dielectric constant of oxide ε_{ox} is $3.9\varepsilon_0$, the substrate doping concentration is $1 \times 10^{16} \text{ cm}^{-3}$, *p*-type, the dielectric constant of silicon ε_{si} is $11.9\varepsilon_0$. The gate electrode is made of heavily doped n^* -doped polysilicon. You can assume that the Fermi level of the n^* -doped polysilicon is located at the bottom of the conduction band of silicon.
 - (a) Calculate the flat band voltage $V_{\rm FB}$. (10%)
 - (b) Calculate the threshold voltage V_T of this *n*-channel MOS transistor. (10%)
- 7. (a) Write down the ideal diode equation and explain the parameters in the equation. (10%)
 - (b) When the terminal forward bias voltage exceeds the contact potential (i.e. the built-in potential), what will the equation become? Please explain. (10%)
- 8. In the design of a bipolar junction transistor (BJT), the determination of base doping level is very important. Please discuss the consequences (i.e. good or bad) when
 - (a) The base doping is lighter. (5%)
 - (b) The base doping is heavier. (5%)

some physical constant: electronic charge $q = 1.6 \times 10^{-19}$ C, electron rest mass $m_0 = 9 \times 10^{-31}$ kg, permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m, thermal energy kT = 0.0259 eV @ 300 °K. the intrinsic carrier concentration $n_i = 1 \times 10^{10}$ cm⁻³ at 300 °K.