台灣聯合大學系統 104 學年度碩士班招生考試試題 共 2 頁 第 / 頁

類組:<u>電機類</u> 科目:固態電子元件(300G)

※請在答案卷內作答

1. A silicon sample maintained at T=300K is characterized by the energy band-diagram below. Answer the following questions.

(a) Do equilibrium conditions prevail? How do you know?

(3%)

(b) Sketch the electrostatic potential V(x) inside the semiconductor as a function of x.

(4%)

(c) Sketch the electric field $\mathcal{E}(x)$ inside the semiconductor as a function of x.

(4%)

- (d) Suppose the electron pictured in the diagram moves back and forth between $x = x_1$ and $x = x_6$ without changing its total energy. Sketch the kinetic energy of the electron as a function of x. (4%)
- (e) Roughly sketch $Log_{10}(n)$ and $Log_{10}(p)$ versus x.

(4%)

- (f) On the same set of coordinates, make a rough sketch of the electron drift-current density and the electron diffusion-current density as a function of position. Briefly explain how you arrived at your sketch. (4%)
- 2. The steady state carrier concentrations inside a pn junction diode maintained at room temperature are plotted in the following figure.

(a) Is the diode forward or reverse biased? Explain how you arrived at your answer.

(4%)

- (b) Do low-level injection conditions prevail in the quasineutral regions? Explain how you arrived at your answer.
- (4%)

(c) What is the applied voltage V_A ?

(4%)

(You may use $n_i = 1 \times 10^{10} \text{ cm}^{-3}$ @ 300K, 2.3kT = 60 meV @ 300K, $\varepsilon_{Si} = 1 \times 10^{-12} \text{ F/cm}$ and $q = 1.6 \times 10^{-12} \text{ C}$ in above 2 equations)

注:背面有試題

類組:<u>電機類</u> 科目:<u>固態電子</u>元件(300G)

※請在答案卷內作答

- 3. For a MOS capacitor on an n-type substrate with a doping level of N_D, biased in inversion. Consider the V_{FB}=-1.5V with a presents of oxide charge, Qox, at the center of the SiO₂. Assume x=0 at Si/SiO₂ interface, sketch qualitatively the following curves along x, where x-axis is perpendicular to the Si surface. (20%)
 - (a) Band diagram. (5%)
 - (b) Electric Field, E(x). (5%)
 - (c) Charge distribution, r(x). (5%)
 - (d) Potential, F(x). (5%)
- 4. For an n-channel MOSFET with gate oxide thickness of T_{ox}. In the following discussion, assume all device parameters remain constant, if not otherwise specified. When T_{ox} increases, (15%)
 - (a) How will sub-threshold swing, S, change? Explain why. (5%)
 - (b) How will body effect coefficient, g, change? Explain why. (5%)
 - (c) Under the same bias condition, how will gate-induced-drain-leakage GIDL current change? Explain why. (5%)
- 5. Consider a NPN BJT with fully ionized impurity concentrations in emitter, base, and collector are $N_{DE}=10^{19} cm^{-3}$, $N_{AB}=10^{17} cm^{-3}$, and $N_{DC}=10^{16} cm^{-3}$, respectively. And where the emitter and base widths $W_E=0.5 um$ and $W_B=0.2 um$. The ratio of diffusion coefficients in base and emitter $D_{nB}/D_{pE}=6$ and the electron diffusion length in base is 200um, answer the problems below, (30%)
 - (a) What is the emitter injection efficiency γ ? (5%)
 - (b) What is the current transport factor α_T ? (5%)
 - (c) Operating at high V_{CE} , the base width is shrunk 0.05um, what is the new current gain β ? And what is the name of this effect? Draw energy band diagram to qualitatively explain the effect. (10%)
 - (d) When operating at high-level injection, the excess electrons push the depletion region of CB junction toward collector and the base width becomes W_B=0.5um, what is the new current gain β? And what is the name of this effect? Draw energy band diagram to qualitatively explain the effect. (10%)

注:背面有試題