類組:<u>電機類</u> 科目:<u>電磁學 A(3007)</u>

※請在答案卷內作答

- 1. For a vector function $\vec{A} = \vec{a}_r r^2 + \vec{a}_z 2z$, verify the divergence theorem for the cylinder defined by r = 1, z = -1, and z = 1. (5%)
- 2. A very long, thin conducting cylinder of radius b is split into four quarter-cylinders, as shown below. The quarter-cylinders in the first and third quadrants are biased at potential $-V_0$, and those in second and fourth quadrants are biased at potential V_0 . Determine the potential distribution inside the cylinder. (15%)

- 3. An a-c voltage source of amplitude V_0 and angular frequency ω , $v_c = V_0 \times \sin \omega t$, is connected across a parallel-plate capacitor C_1 in following figure.
 - (A) Verify that the displacement current (i_c) in the capacitor is the same as the conduction current in the wires. (5%)
 - (B) Determine the magnetic field intensity at a distance \mathbf{r} from the wire. (5%)

4. From Maxwell equations, please derive the source-free homogenous vector electromagnetic wave equation. (10%)

注:背面有試題

類組:<u>電機類</u> 科目:<u>電磁學 A(3007)</u>

※請在答案卷內作答

- 5. A slightly lossy transmission line of characteristic impedance Z_0 , length $1 = \lambda/2$, and propagation constant $\gamma = \alpha + j\beta$ (with $\alpha l = 1$) is short-circuited at one end. This short-circuited line is equivalent to an R-L-C series resonant circuit with resonant radian frequency ω_0 .
 - (A) Determine R, L, and C of this equivalent resonant circuit. (18%)
 - (B) What is the Q-factor of this resonator? (2%)
- 6. Electric magnetic waves are guided within a z-oriented rectangular metallic waveguide where waves are bounced by conducting walls x = 0, x = a, y = 0, and y = b. Based on basic electromagnetism, we know six components E_x , E_y , E_z , H_x , H_y , and H_z are equal to (a constant)×(superposition of plane waves).
 - (A) Without resorting to the E_z - H_z formula, clearly explain why $E_x/H_y = -E_y/H_x =$ constant. In your answer sheets, you are asked to give such a constant for both TE and TM modes. (6%)
 - (B) Based on basic electromagnetism, derive E_x , E_y , and E_z . Here you asked to mathematically derive the above-mentioned superposition of plane waves only, i.e., neglecting the constant term. (15%)
 - (C) Clearly discuss the behavior (or propagation) of an injected electromagnetic wave, which frequency is less than the cut-off frequency of any TE_{mn} and TM_{mn} modes, within the waveguide. (4%)
- 7. Please write down the Brewster angles with perpendicular polarization ($\theta_{B\perp}$) and parallel polarization ($\theta_{B\parallel}$). (15%)

注:背面有試題