台灣聯合大學系統 98 學年度碩士班考試命題紙 共_4_頁 第_1_頁

科目:訊號與系統(500C) 校系所組:清大電機工程學系(乙組、丁組)

一、選擇題 60%

(共有 10 題, 每題 6 分, 爲多選題, 答錯一個選項倒扣 1.5 分, 請在答案卡上作答)

- 1. Consider a discrete-time linear time-invariant system with impulse response h[n]. Which of the following statements is (are) true?
 - (A) If the system is causal, then it has memory.
 - (B) If h[n] is a right-sided sequence, then it is causal.
 - (C) A necessary and sufficient condition for the system to be stable is that h[n] be absolutely summable.
 - (D) If h[n]=u[n] (the unit-step function), then the system is invertible.

(6%)

- 2. Consider a discrete-time signal x[n]. Which of the following statements is (are) true?
 - (A) If x[n] is non-periodic, then y[n] = x[2n] must be non-periodic.
 - (B) If x[n] is periodic, then its even part must be periodic.
 - (C) If $x[n] = \cos \alpha n$ with $\alpha \neq 0$, then the signal is periodic when α is a rational number of 2π .
 - (D) If $x[n] = \cos(\frac{\pi n}{3})\sin(\frac{\pi n}{5})$, then the signal is non-periodic.

(6%)

3. Consider the following three continuous-time systems S_1 , S_2 , and S_3 whose responses to a complex exponential input e^{jSt} are specified as

 $S_1:e^{j5t}\to\cos(5t)$

 $S_1: e^{j5t} \to te^{j5t}$ $S_2: e^{j5t} \to e^{j5(t-1)}$ Which of the following answers is correct?

- (A) S_1 , S_2 , and S_3 are definitely not LTI.
- (B) S_1 , and S_3 are definitely not LTI.
- (C) S_2 , and S_3 are definitely not LTI.
- (D) S_1 is definitely not LTI.

(6%)

- 4. Let x(t) be a signal with Nyquist rate ω_0 . Which of the following signal has the highest Nyquist rate?
 - (A) $x(t)\cos(\omega_0 t)$
 - (B) x(t) + x(t-1)
 - (C) $\frac{dx(t)}{dt}$
 - (D) $x^2(t)$

(6%)

注:背面有試題

台灣聯合大學系統 98 學年度碩士班考試命題紙 共 4 頁第2 頁

科目: 訊號與系統(500C) 校系所組: 清大電機工程學系(乙組、丁組)

5. Which of the following statement(s) is(are) correct regarding to a second-order continuous-time system described by the differential equation:

$$\frac{d^2y(t)}{dt^2} + 2\zeta w_n \frac{dy(t)}{dt} + w_n^2 y(t) = w_n^2 x(t)$$

where x(t) denotes the input, y(t) the output, ζ the damping ratio, and w_n the undamped natural frequency?

- (A) According to the value of damping ratio, the impulse response of the second-order system is categorized into three cases: underdamped (0 < ζ < 1), critically damped (ζ = 1), and overdamped ($\zeta \ge 1$).
- (B) The step response of the system exhibits both overshoot (i.e., the step response exceeds its final value) and ringing (i.e., oscillatory behavior) in the overdamped case.
- (C) The underdamped case gives step response the fastest response (i.e., the shortest rise time) that is possible without overshoot and thus has the shortest settling time in such case.
- (D) The magnitude response |H(jw)| of the system has a peak at some frequency near w_n in the underdamped case. The less damping there is in the system, the sharper is the peak in |H(jw)|. (6%)
- 6. Consider a second-order discrete-time causal LTI system described by the difference equation: $v[n] - 2r\cos\theta v[n-1] + r^2v[n-2] = x[n]$ with 0 < r < 1 and $0 \le \theta \le \pi$.
 - (A) The frequency response for this system is $H(e^{j\Omega}) = \frac{1}{1 2r\cos\theta e^{-j\Omega} + r^2e^{-j2\Omega}}$, and the corresponding impulse response is $h[n] = r^n \frac{\sin[(n+1)\theta]}{\sin \theta} u[n]$ for $\theta \neq 0$ or π .
 - (B) The impulse response has a damped oscillatory behavior and the step response exhibits ringing and overshoot for any value of θ other than zero or π .
 - (C) The magnitude response $|H(e^{j\Omega})|$ of the system has a peak at some frequency Ω near θ . The closer to 0 the value of r is in the system, the sharper is the peak in $|H(e^{j\Omega})|$.
 - (D) If one wishes to use this system to boost the frequency component of an input signal x[n] near 0.25π , the $(0.9, 0.25\pi)$ is a better choice than $(0.1, 0.25\pi)$ for parameters (r, θ) in this case. (6%)
- 7. Determine which of the following statements is(are) true?
 - (A) The continuous-time signal $x(t) = u(t + T_0) u(t T_0)$ can undergo impulse-train sampling without aliasing, provided that the sampling period $T \le 2T_0$.
 - (B) The continuous-time signal x(t) with Fourier transform $X(jw) = u(w + w_0) u(w w_0)$ can undergo impulse-train sampling without aliasing, provided that the sampling period $T \le \pi/w_0$.
 - (C) The discrete-time signal $x[n] = u[n + N_0] u[n N_0]$ can undergo sampling sequence $p[n] = \sum_{k=0}^{\infty} \delta[n-kN]$ sampling without aliasing, provided that the sampling period $N \le 2N_0$.
 - (D) The discrete-time signal x[n] with Fourier transform $X(e^{j\Omega}) = u(\Omega + \Omega_0) u(\Omega \Omega_0)$, $0 < \Omega_0 < \Omega_0$ π , $|\Omega| < \pi$, can undergo sampling sequence $p[n] = \sum_{k=0}^{\infty} \delta[n-kN]$ sampling without aliasing, provided that the sampling period $N \leq \pi/\Omega_0$.

(6%)

台灣聯合大學系統 98 學年度碩士班考試命題紙 共_4_頁 第_3_頁

科目:訊號與系統(500C) 校系所組:清大電機工程學系(乙組、丁組)

8. For the following system,

$$h[n] = 10(-1/2)^n u[n] - 9(-1/4)^n u[n]$$

which of following statements is (are) correct?

- (A) This system is a causal and stable system
- (B) This system can not be a causal and unstable system
- (C) Its inverse system is a causal and stable system
- (D) Its inverse system can not be a causal and stable system (6%)
- 9. The z-transform of a discrete-time signal x[n] is given by

$$X(z) = \frac{30z^3 - 16z^2 + 2z + 3}{6z^3 - z^2 - z}, \quad ROC: \frac{1}{2} < |z|$$

Which of following answers is (are) correct?

(A)
$$x[n] = -3\delta[n-1] + \delta[n] - 3\delta[n+1] - 21\delta[n+2] + 3\delta[n+3] + \cdots$$

(B)
$$x[n] = 5\delta[n] - \frac{11}{6}\delta[n-1] + \frac{31}{36}\delta[n-2] + \frac{73}{216}\delta[n-3] + \cdots$$

(C)
$$x[n] = \delta[n] - 3\delta[n-1] + (\frac{-1}{3})^n u[n] + 3(\frac{1}{2})^n u[n]$$

(D)
$$x[n] = 5\delta[n] - 3\delta[n-1] + \frac{3}{2}(\frac{1}{2})^{n-1}u[n-1] - \frac{1}{3}(\frac{-1}{3})^{n-1}u[n-1]$$

(6%)

10. The bilateral Laplace transform of a continuous-time signal x(t) is specified by,

$$X(s) = \frac{s+4}{(s+2)(s^2+6s+13)}$$
 with ROC: -3 < Re(s) < -2

Which of following answers is (are) correct?

(A)
$$x(t) = \frac{2}{5}e^{-2t}u(t) - \frac{2}{5}e^{-3t}\cos(2t)u(t) + \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(B)
$$x(t) = -\frac{2}{5}e^{-2t}u(-t) - \frac{2}{5}e^{-3t}\cos(2t)u(t) + \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(C)
$$x(t) = -\frac{2}{5}e^{-2t}u(-t) + \frac{2}{5}e^{-3t}\cos(2t)u(t) - \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(D)
$$x(t) = \frac{2}{5}e^{-2t}u(t) + \frac{2}{5}e^{-3t}\cos(2t)u(-t) - \frac{3}{10}e^{-3t}\sin(2t)u(-t)$$

(6%)

注:背面有試題

台灣聯合大學系統 98 學年度碩士班考試命題紙 共_4_頁 第_4_頁

科目: 訊號與系統(500C) 校系所組: 清大電機工程學系(乙組、丁組)

二、演算題 40%

(共有4題,每題10分,請在答案卷上作答,記得註明作答題號)

- 11. Consider a linear time-invariant system with impulse response $h(t) = e^{-t}u(t+1)$. Determine the output y(t) of the system when the input is $x(t) = \sin^2 t$.

 (10%)
- 12. The Parseval's relation states that the energy of a discrete-time signal can be determined by integrating the energy per unit frequency over a full 2π interval of distinct discrete-time frequencies. Using Parseval's relation, evaluate the following integral:

$$\int_0^{\pi} \frac{4}{5 + 4\cos\omega} d\omega$$
(10%)

13. Suppose that x[n] has a Fourier transform $X(e^{j\Omega})$ that is zero for $\pi/3 \le |\Omega| \le \pi$. If x[n] is first sampled by a sampling sequence p[n] ($p[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$) with sampling period N (sampling frequency $\Omega_s = 2\pi/N$) to obtained a sampled sequence $x_p[n] = x[n] p[n]$, and then filtered by a discrete-time ideal lowpass filter $H(e^{j\Omega})$ with cutoff frequency $\Omega_s/2$ and gain N to obtain a output

sequence $x_r[n]$, (a) give the maximum value of N such that $X_r(e^{j\Omega}) = X(e^{j\Omega})$, and under such N (2%)

(b) derive a formula for $X_r(e^{j\Omega})$ in terms of $X(e^{j\Omega})$, (4%)

(c) derive a formula which expresses $x_r[n]$ in terms of samples of x[n] in this case. (4%)

14. Determine the continuous-time signal corresponding to the following unilateral Laplace transform,

$$X(s) = s \frac{d^2}{ds^2} \left(\frac{1}{s^2 + 25} \right).$$
(10%)