科目:控制系統(5008)

校系所組:清大電機工程學系丁組、動力機械工程學系乙組

- 1. Choose from the followings TEN INCORRECT statements, and briefly explain why.

 (2.5% each)
 - (a) It is possible to improve the tracking performance by an open-loop control system.
 - (b) It is possible to achieve disturbance rejection by an open-loop control.
 - (c) As compare with a P control, a PI controller improves the steady state error at the cost of a smaller damping ratio when the bandwidth of the control system is about the same.
 - (d) If the control system has two right-half plane zero, then it causes only time delay but no undershoot in step responses.
 - (e) In a feedback control system, if the plant has a pure integrator and the controller also has a pure integrator, then the steady state error tracking a parabola command is bounded.
 - (f) A control system with too large a stability margin must satisfy its transient and/or steady state performance.
 - (g) A D-term should be introduced into a PID controller when the response speed is too slow.
 - (h) The *PID* parameters obtained from the *Z-N* tuning formula results in an over-damped control system (i.e., $\varsigma > 1$).
 - (i) The performance of a feedback system is insensitive to plant uncertainty, but sensitive to sensor nonlinearity.
 - (j) A PI controller pushes the root locus of a control system towards the right-hand-side on the complex plane (as compared with a P-control).
 - (k) An unstable plant may become stable when feedback control is introduced, and the undershoot effect in a plant can also be removed by feedback.
 - (l) When saturation occurs to a control system, the equivalent DC gain of the loop transfer function (i.e., open-loop system transfer function) tends to decrease.
 - (m) In a real control system where G(s) represents the plant (including the sensor and the actuator) with a bandwidth about 10 rad/sec and $D(s) = K \frac{1 + (s/z)}{1 + (s/p)}$ represents the controller to be implemented by a

micro-processor, K can be chosen as large as 100 in order to yield a close-loop bandwidth of around 100 rad/sec.

- (n) A Phase lead controller improves the phase plot of the loop transfer function, but not necessarily the resultant phase margin.
- (o) To apply the Nyquist stability criterion, we need to know the number and

科目:控制系統(5008) 校系所組:清大電機工程學系丁組、動力機械工程學系乙組

locations of right-half-plane (RHP) poles and RHP zeros of the plant.

- (p) The plant in a control system can be conceived as a low-pass filter, hence sensor noises generally cause no trouble to a control system.
- (q) When we design a control system using the root locus method, it concerns only the transient performances related to the damping ratio ζ and the natural frequency ω_n of a system. As regards the steady state performances and noise saturation, there is nothing we can do using the root locus method.
- (r) The inclusion of a RHP poles and/or zeros into a controller always deteriorate the performance of a control system. Therefore, unless there is no other way to stabilize a feedback control system, the controller should be of minimal phase.
- (s) When a control system is designed on the Bode plots, it can handle not only the transient performance related to the damping ratio ζ and the natural frequency ω_n , but also the steady state performances and noise attenuation.
- (t) The undershoot effect caused by a RHP zero in the plant can easily be removed by pole-zero cancellation in a practical control system.

2. Consider the system shown below.

$$G(s) = \frac{1}{(s+2)(s+3)}$$

- (a) When G_c is a P controller, i.e., G_c =K, and the damping ratio ζ of the system is varied continuously from 0.5 to 0.7, find the corresponding range of K. (5%)
- (b) When G_c is a P controller, i.e., $G_c = K$, and K varies continuously in the range as obtained in (a), find the corresponding range of steady state error for unit step input. (5%)
- (c) When G_c is a PI controller, i.e., $G_c = K_p(1 + \frac{K_I}{s})$, find the conditions in terms of K_p and K_I to ensure the stability of the system. (5%)

注:背面有試題

科目:控制系統(5008) 校系所組:清大電機工程學系丁組、動力機械工程學系乙組

- (d) Let $G_c = K_p(1 + \frac{20}{s})$. Draw the root locus roughly for K_p varying from 0 to ∞ and find the poles of the system when the root locus crosses the imaginary axis. (5%)
- (e) If $G_c = 1 + \frac{20}{s}$, draw the Bode diagram for $G_cG(s)$ and designate in your plot the gain margin and the phase margin. (5%)
- 3. Use the state space pole-placement method to design a compensator for the third-order system with transfer function

$$G(s) = 10/s(s+2)(s+8)$$

Please use state space description in observer canonical form and place the control poles at -1.42 and -1.04 ± 2.14 j and observer poles at -4.25 and -3.13 ± 6.41 j.

(25%)

4. A plant to be controlled is given as: (25%)

$$\dot{X} = AX + Bu$$
$$y = CX$$

where
$$X = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$$
, $A = \begin{bmatrix} -6 & 2 \\ 2 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \end{bmatrix}^T$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

- (1) Find the eigenvalues of A and the corresponding eigenvectors.
- (2) Derive and prove the controllability and observability of this system.
- (3) Find a transformation matrix S, i.e., Z = SX, $Z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}^T$ to diagonalize the system matrix A.
- (4) For the resulted transformed plant:

$$\dot{Z} = A'Z + B'u$$
$$y = C'Z$$

- (a) Find: A', B' and C'.
- (b) The closed-loop poles of the transformed plant are to be located at -8 and -10 via state feedback control $u = r GZ = r g_1 z_1 g_2 z_2$, find g_1 and g_2 .
- (c) Find the closed-loop tracking transfer function from r(t) to y(t), the zero of this transfer function, and the steady-state value of the output y(t) due to unit-step input of r(t).