國立清華大學命題紙

96 學年度_ 電機領域聯合招生_ 系 (所) 組碩士班入學考試

科目____控制系統____科目代碼_9910_共_2_頁第_[_頁 *請在【答案卷卡】內作答

1. Consider a unity-feedback system with open-loop transfer function

 $G(s) = k(s^2 + 2s + 5)/s(s + 3)(s^2 + s + 1); k \ge 0$

(20%)

Sketch the root locus plot.

- 2. Please explain or define the following items:
 - (A) Using Nyquist plot to define gain margin (GM) and phase margin (PM)
 - (B) Stability robustness
 - (C) Minimum phase and non-minimum phase systems (20%)

3. An electomechanical system is modeled by

$$G(s) = \frac{5}{(10^{-3} s + 1)} \frac{0.05}{s(0.05s + 1)} \frac{1}{1 + (0.6/20 \times 10^3)s + (s/20 \times 10^3)^2}$$
 and it is

cascaded with a PD controller of $G_c(s) = 400(s+1)$, Please

- (A) plot the open loop Bode diagram of $G_c(s)G(s)$,
- (B) plot the closed-loop Bode diagram under unity feedback,
- (C) compare the performance of (A) and (B).

(30%)

大 學 題 紙 清 T 國

科目代碼 9910 共 2 頁第 2 頁 *請在【答案卷卡】內作答 控制系統 科目

4. A plant to be controlled has the following dynamic governing equations: (30%)

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ -0.1 \end{bmatrix} d(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

- (1) Let K=0 and D(s)=0, find the plant transfer function matrix: $Hp(s)=C(sI-A)^{-1}B$.
- (2) If it is desired to assign the closed-loop poles at -17 and -26, find the state feedback gain matrix $K = [k_1, k_2]$.
- (3) Let D(s)= 0, find the closed-loop transfer function matrix.
- (4) Find the steady-state value of output y(t) due to unit-step change of command input r(t).

(5) For the following first-order process, briefly describe how to estimate the parameters a and b from the step response test.

