

- (a) Sketch the developed three-phase or single-phase wiring diagram (which depicts the CT or PT connections) for both the percentage differential and the overvoltage relays.
- (b)Why is the overvoltage relay needed? Give the reason (You are requested to express in one sentence).
- 6. What are the underlying assumptions for applying the equal area method for transient stability analysis? Answer by giving two sentences each for stating on assumption. (5%)

	國	立	清	華	大	學	命	題	紙	
	95 學年度	夏電格	幾領域聯合	·招生	系(所)		組石	主班入县	學考試	
科目_	電力	系統	科目	代碼_99	<u>905_</u> 共	3_頁第_	<u> </u>	請在【答	案卷卡】	內作答

 γ . Consider a three-phase system of the given one-line diagram. The three phase transformer name plate ratings are as follows:

- (15%) Transformer TR1: 5 MVA, $13.2\Delta 132Y$ kV, leakage inductance of 10%.
 - Transformer TR2: 10 MVA, $138Y 69 \Delta kV$, leakage reactance of 8%.

The generator voltage V_G is 13.2 kV(line-to-line), the transmission line impedance $Z_{line} = 10 + j100 \Omega$, and the load impedance $Z_{load} = 300 \Omega$. Use the per-unit analysis technique, find the acutal values of the generator current, the transmission line current, the load current, and the load voltage.

8. A single-phase converter is as given. The AC input voltage $v_s = V \sin(\omega t)$, and the thyristors T_1 (10%) and T_2 are triggered with a delay angle of α . Assuming the load current I_0 is constant.

- (a) Sketch the waveforms of output voltage v_o and input current i_s .
- (b) Calculate the average value of v_o .
- (c) Calculate the power factor of this converter.

