科目代碼 9908 共 3 頁第 1 *請在試卷【答案卷】內作答

1. (1) Find the z parameters of the given two-port network.

(2) Now the above network is connected as below to deliver power from source to load. Find the load real power P_L . (7%)

(3) If the maximum power transfer is desired, find the transformer turn ratio $N_1:N_2$ and this maximum load power. (6%)

- (a) For the given circuit, please determine the impedance Z_L which results in maximum average power transferred to Z_L .
 - (b) Find the real power, reactive power and complex power associated with Z_L .

共 3 頁第 → 頁 *請在試卷【答案卷】內作答 9908 科目

- Assume in the following circuit, the resistance of R is equal to 2 k Ω and the 3. capacitance of C is equal to 0.5 nF.
 - If $v_{IN}(t)$ is an unit step function, i.e., $v_{IN}(t) = 0$ V when t < 0 and $v_{IN}(t) = 1$ V when $t \ge 0$, please calculate $v_1(t)$ and $v_2(t)$. (6%)
 - When $v_{1N}(t) = \sin \omega t$, $v_1(t)$ and $v_2(t)$ can be expressed as $A_1 \times \sin(\omega t + \theta_1)$ and (b). $A_2 \times \sin(\omega t + \theta_2)$, respectively. Please find the value ω so that $A_1 = A_2$. Also please calculate the phase difference $(\theta_1 - \theta_2)$ in this condition. (7%)

- There is a multi-input/multi-output RC network shown in the following figure. All the resistor values are equal to 50 k Ω and all the capacitor values are equal to 20 nF. Its inputs are v_1 , v_2 , v_3 , and v_4 . Its outputs are v_5 , v_6 , v_7 , and v_8 .
 - If $v_1(t) = \sin(1000 \times t)$, $v_2(t) = \cos(1000 \times t)$, $v_3(t) = -\sin(1000 \times t)$, $v_4(t) = -\sin(1000 \times t)$ (a). $-\cos(1000 \times t)$, please find v_5 , v_6 , v_7 , and v_8 . (6%)
 - If $v_1(t) = \sin(1000 \times t)$, $v_2(t) = -\cos(1000 \times t)$, $v_3(t) = -\sin(1000 \times t)$, $v_4(t)$ (b). = $\cos(1000 \times t)$, please find v_5 , v_6 , v_7 , and v_8 . (6%)

科目 電路學 科目代碼 9908 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

- 5. (a) In a coupled inductor, why is the coupling coefficient k often less than 1.0?
 - (b) For a low-pass filter $\frac{p_1}{s+p_1}(p_1>0)$, why is p_1 often referred to as the 3-db frequency?
 - (c) Can you find the phasor representation of $v(t) = e^{-0.01t}cos(100t)$, (0 < t < 1.0 sec) (Yes/No)? Explain your answer.

(10%)

- 6. (a) Find the transfer function of the following circuit where the input and the output are denoted as Vi and Vo respectively. (7%)
 - (b) Also find the impulse response of this circuit. (8%)

7. In the following balanced positive phase sequence three-phase circuit, the three-phase load is known to be 30kW + j 40kVars. If an ideal wattmeter is connected as shown in the circuit where cc and pc denotes the current coil and the potential coil respectively, what is the wattmeter reading? (10%)

8. Assume that the following periodic voltage is applied to a one ohm resistor.

$$V(t) = 30 + 20 \cos 50t + 10 \sin 100t - 5 \cos 150t$$
 volts
Calculate the average power delivered to this resistor. (10%)