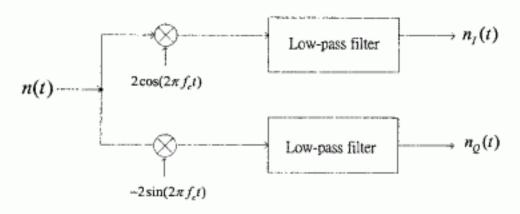
九十三學年度<u>電機工程學</u>系(所)<u>乙</u>組碩士班入學考試 科目<u>通訊系統 科號 2704 共 3 頁第 1 頁 *請在試卷【答案卷】內作答</u>

- A broadband Gaussian signal s(t) of zero mean and power spectral density S₀/2 is applied to an ideal low-pass filter of bandwidth B and passband magnitude response of one. Denote the filter output as ν(t).
 - (a) Find the power spectral density of v(t) and plot it. (4%)
 - (b) Find the autocorrelation function of v(t) and plot it. (5%)
 - (c) At what sampling rate will the resulting samples of v(t) be statistically independent? (2%)


What is the mean and the variance of each such sample? (2%)

- 2. Prove the following statements:
 - (a) An autocorrelation function is an even function and has its maximum value at τ = 0. (4%)
 - (b) If X(t) contains a sinusoidal component, then the autocorrelation function R_X(τ) will also contain a sinusoidal component of the same frequency. (4%)
 - (c) Both the in-phase component n₁(t) and quadrature component n_Q(t) have the same spectral density, which is related to the power density S_N(f) of the narrowband noise n(t) as

$$S_{N_c}(f) = S_{N_0}(f) = \begin{cases} S_N(f - f_c) + S_N(f + f_c), -B \le f \le B \\ 0, \text{ otherwise} \end{cases}$$

Where it is assumed that $S_N(f)$ occupies the frequency interval $f_c - B \le |f| \le f_c + B$, and $f_c > B$. (8%)

[Hint: Use the following scheme to extract $n_I(t)$ and $n_Q(t)$:

where the low-pass filters are ideal with a bandwidth equal to one-half that of the narrowband noise n(t).

國立清華大學命題紙

九十三學年度<u>電機工程學</u>系(所)<u>乙</u>組磺士班入學考試 科目<u>通訊系統 科號 2704 共 3 頁第 2 頁 *請在試卷【答案卷】內作答</u>

- 3. A single-sideband amplitude modulated (SSB-AM) signal s(t) is generated by modulating a carrier by the signal m(t). The SSB-AM signal s(t) is given by s(t) = A_cm(t) cos(2πf_ct) + A_cm̂(t) sin(2πf_ct), where A_c = 10 is the amplitude of the carrier, f_c = 500 kHz is the carrier frequency, and the modulating signal is given by m(t) = cos(2000 πt) + 4 sin(6000 πt).
 - (a) Derive the Hilbert transform m(t) of m(t). (5%)
 - (b) Is s (t) an upper or lower sideband SSB-AM signal? You must give a proof of your answer. (5%)
 - (c) Draw the magnitude spectrum of s(t).(5%)
- 4. Consider the problem of binary signal transmission over an additive white Gaussian noise (AWGN) channel specified by r = s + n, where r is the received signal, s ∈ {s₀,s₁} (s₀ < s₁) is the transmitted signal, and n ~ N(0,σ²) is the additive Gaussian noise. Assume that Pr{s = s₀} = p₀ and Pr{s = s₁} = p₁.
 - (a) Derive the optimal decision rule that minimizes the probability of error. (5%)
 - (b) In fact, the optimal decision rule in (a) compares the received signal r with a threshold τ. What is τ when p₀ = p₁? How does τ change as the prior probability p₀ increases from 0 to 1 when the noise variance σ² is finite? How does τ change as the noise variance σ² increases from 0 to ∞ when 0 < p₁ < p₀ and when 0 < p₀ < p₁? (5%)
 - (c) Derive the minimum probability of error P_c. (5%)
 - (d) What is P_e when $p_0 = p_1$? What is P_e when $\sigma^2 = 0$? What is P_e when $\sigma^2 = \infty$ and $0 < p_1 < p_0$? What is P_e when $\sigma^2 = \infty$ and $0 < p_1 < p_0$? What is P_e when $\sigma^2 = \infty$ and $0 < p_0 < p_1$? (5%)
- (a) Briefly explain the meanings and importance of carrier recovery and symbol timing recovery. (6%)
 - (b) Take a coherent QPSK system as an example. Derive the functional blocks for carrier recovery and symbol timing recovery, respectively. Also discuss the effects of the derived blocks under different E_b/N₀. (10%)

國立清華大學命題紙

九十三學年度<u>電機工程學</u>系(所)<u>乙</u>組碩士班入學考試 科目<u>通訊系統</u>科號 2704 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

- Consider a direct sequence spread spectrum system.
 - (a) Let the message be b(t), spreading sequence be c(t), and carrier frequency be ^{W_c}/_{2π}. Draw a block diagram of the system and explain how the system has anti-jamming capability. (10%)
 - (b) Let the PN code rate be 192×10⁶ chips per second and a binary message bit rate at 7500 bps. If QPSK instead of BPSK, what is the processing gain? (5%)
 - (c) Assuming the received signal power is 8×10⁻¹⁴ watts and the one-side noise spectral density level, N₀, is 1.6×10⁻²⁰ W/HZ, find the signal-to-noise power ratio in the input of the receiver. (Use the information from (b)), (5%)