國 立 清 華 大 學 命 題 紙

九十二學年度<u>電機工程學</u>系(所)<u>乙</u>組碩士班研究生招生考試 科目<u>控制系統</u>科號<u>2405</u>共<u>2</u>頁第<u></u>頁*請在試卷【答案卷】內作答

1. For the nonlinear system expressed by:

$$\frac{dx}{dt} = x^2 - u$$
$$y = 2x$$

- (1) for the control input u = 9, find the operating points (u_0, x_0, y_0) ;
- (2) find the linearized small-signal state and output equations at stable operating point;
- (3) find the transfer function $H(s) = \Delta y(s) / \Delta u(s)$. (15%)

2. For the control system block diagram as shown:

- (1) Realize the control scheme using only two operational amplifiers.

 Draw the circuit configuration with component values being indicated.
- (2) Transform the analog control scheme into discrete-time domain using bilinear transformation method, and write down the digital control law c(n). The sampling interval is chosen as T=Ims.
- (3) Design an analog command feedforward controller to yield ideal tracking control, i.e., $x(t) = x^*(t)$. (20%)

國 立 清 華 大 學 命 題 紙

九十二學年度<u>電機工程學</u>系(所)<u>乙</u>組碩士班研究生招生考試 科目<u>控制系統</u>科號<u>2405 共 乙</u>頁第<u>2</u>頁 *請在試卷【答案卷】內作答

- 3. Consider the case of rabbits and foxes in Australia. The number of rabbits is x_1 and if left alone would grow indefinitely until the food supply was exhausted so that $x_1' = kx_1$. However, with foxes present on the continent, we have $x_1' = kx_1 ax_2$, where x_2 is the number of foxes. Now if the foxes must have rabbits to exist, we have $x_2' = bx_1 hx_2$. Determine whether this system is stable and thus decays to the condition $x_1(t) = x_2(t) = 0$ at $t = \infty$. What are the requirements on a, b, h, and k for a stable system? What is the result when k is greater than k? (20%)

 4. A laser beam can be used to weld, drill, etch, cut, and mark metals. Assume that we have a work requirement for an accurate laser to mark a parabolic path with a closed loop control system with unity feedback. Furthermore, we assume that the system transfer function for the laser is $G(s) = \frac{K}{s^2}$. Calculate the necessary gain to result in a steady-state error of 5 mm for input $r(t) = t^2$ cm. (15%)
- 5. Consider the following linear state-space system $\dot{X}(t) = AX(t) + BU(t)X(0) = X_o$
 - (i) Please find X(t)=?
 - (ii) If U(t)=KX(t), please find X(t)=?
 - (iii) How do you check the controllability of the system?
 - (iv) How do you check the observability of the following system $\dot{X}(t) = AX(t) + BU(t)$ Y(t) = CX(t) + DU(t)

(15%)

6. Consider the following linear system

$$\dot{X} = AX + BU$$

$$Y = CX$$

Suppose the following observer is used to estimate the state variable \hat{X} $\hat{X} = A \hat{X} + BU + K(Y - C\hat{X})$

- (i) Please find the dynamic of estimation error $e = X \hat{X}$
- (ii) If $A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$ how do you specify K such that the eigenvalues of error dynamic of e are all at -10? (15%)