國立清華大學命題紙

九十二學年度<u>電機工程學系甲、乙組暨光電工程研究所</u>碩士班研究生招生考試

科目<u>電子學</u>科號<u>2303、2402、2503</u>共<u>2</u>頁第<u>「</u>頁<u>*請在試卷【答案卷】內作答</u>

1. The diodes in the circuit are ideal. The resistors are $R_1=R_2=R_3$. The voltage $V_1=10$ V. Determine the voltage V_0 for $V_2=(a)$ 10 V, (b) 2 V, (c) -1 V, (d) -10 V and (e) -13 V.

(10% Fig. P1)

2. In the voltage regulator as shown, the parameters are V_{zo} =5.7 V, r_z =10 Ω for the zener diode and β =100 for the BJT, and R_1 = R_2 =1 k Ω . The supply voltage is V_{ps} =10 V \pm 10%. The output voltage is V_0 =5 V \pm Δ %. Find the value of Δ and the output resistance R_{out} .

(10% Fig. P2)

3. The transistor parameters in the circuit are β =100, V_A =100 V for the BJT; K_n =1 mA/V², λ =0.02 V⁻¹ for the FET. The capacitor C=∞. The voltage V_S and the resistors R_1 , R_2 , R_3 are designed such that the collector and drain currents are I_{CQ} = I_{DQ} =1 mA. Determine the voltage gain V_o/V_i and the output resistance R_{out} .

(15% Fig. P3)

國 立 清 華 大 學 命 題 紙

九十二學年度<u>電機工程學系甲、乙組暨光電工程研究所</u>碩士班研究生招生考試

科目___<u>電子學</u>科號<u>2303、2402、2503</u>共<u>2</u>頁第<u>2</u>頁 <u>*請在試卷【答案卷】內作答</u>

- 4. For a single common source device, please derive its unity-current-gain frequency. (draw the small signal model and consider all the parasitic capacitances and output resistance). (10%)
- 5. Fig. P5 is a differential amplifier with I_{D5} =0.2mA. If all the devices are biased with V_{GS} -Vt = 0.2V, where NMOS and PMOS threshold voltages are Vtn=|Vtp|=0.6V. NMOS Early voltage is V_A n=10V and PMOS is V_A p=20V. R_1 = R_2 =10K, C_1 = C_2 = C_3 = C_4 =1pF. Neglect the body effect. Please
 - (a) draw the differential mode half circuit and calculate its differential mode gain.
 (5%)
 - (b) draw the common mode half circuit and calculate its common mode gain, (5%)
 - (c) draw the different mode frequency response. (5%)
 - (d) what do R₁ and R₂ do for differential and common mode operation in this circuit? (5%)

- 6. As shown in Fig. P6, a street light system is unstable when noise exists around the threshold. Please redesign this system by using Schmitt trigger.
 - (a) Show your design with simple explanation. (10%)
 - (b) If the output of the OP is V_H or V_L (Saturation Voltages with $V_H > 0 > V_L$), find the threshold voltages in your design. (10%)
- 7. (15%) This is the problem about conventional Dynamic Random Access Memory (DRAM).
 - (a) Draw the structure of a conventional DRAM cell.
 - (b) How to perform the read operation? (Note that the bus capacitance is greater than that in DRAM cell)
 - (c) If a constant leakage current I_{leak} exists, and the capacitance of the DRAM cell is C_{cell} , calculate the refresh period if the power supply and threshold voltage of the NMOS pass transistor is V_{DD} and V_{TN} , respectively. (Logic-1 $\geq V_{DD}/2$)