國 立 清 華 大 學 命 題 紙

九十二學年度_電機工程學_系(所)______組碩士班研究生招生考試

科目_工程數學 科號 2301、2401 共 3 頁第 / 頁 *請在試卷【答案卷】內作答

- 1. True or false. You should give reasons or counterexamples, otherwise no credits.
 - (a) (3%) Let A, B, C be three $n \times n$ matrices. If A is similar to B and B is similar to C, then A is similar to C.
 - (b) (3%) If A and B are diagonalizable, then A+B is also diagonalizable.
 - (c) (3%) There is a 3×5 matrix A with rank(A) = 3 and a 5×3 matrix B with rank(B) = 3 such that AB is the zero matrix.
 - (d) (3%) Let R^{12} be the vector space of all real 12-tuples. There is a subspace V of R^{12} with $\dim(V) = 5$ so that its orthogonal complement V^{\perp} has dimension 5 too.
- 2. Let U and W be two subspaces of a finite-dimensional vector space V. Let U+W be the set of all vectors in V of the form $\boldsymbol{u}+\boldsymbol{w}$ with $\boldsymbol{u}\in U$ and $\boldsymbol{w}\in W$.
 - (a) (4%) Please show that U+W and $U\cap W$ are subspaces of V.
 - (b) (5%) Please show that

$$\dim(U) + \dim(W) = \dim(U \cap W) + \dim(U + W).$$

3. Let M_n be the $n \times n$ matrix with 3's on the main diagonal except the first entry which is 1, 1's directly above the main diagonal and (-1)'s directly below the main diagonal, and 0's elsewhere. For example,

$$M_5 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 3 & 1 & 0 & 0 \\ 0 & -1 & 3 & 1 & 0 \\ 0 & 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & -1 & 3 \end{bmatrix}.$$

We define $D_n = \det M_n$.

- (a) (2%) Find D_1 and D_2 .
- (b) (3%) If $n \geq 3$, find a formula for D_n in terms of D_{n-1} and D_{n-2} .
- (c) (4%) Find a formula for D_n in terms of n.

國 立 清 華 大 學 命 題 紙

九十二學年度<u>電機工程學</u>系(所)<u>甲、乙</u>組碩士班研究生招生考試 科目<u>工程數學</u>科號<u>2301、2401 共</u>**3** 頁第 **→** 頁 *請在試卷【答案卷】內作答

4. The covariance Cov(X,Y) of two random variables X and Y is defined as

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

where μ_X and μ_Y are the means of X and Y respectively.

(a) (7%) Please show that if X and Y are statistically independent, then

$$Cov(X, Y) = 0.$$

(b) (8%) Please show that if X and Y have the same distribution, then

$$Cov(X - Y, X + Y) = 0.$$

- 5. (15%) A certain cancer is found in one person in 100. If a person does have the disease, in 99% of the cases the patient will show symptom Z. However, if a person does not have the cancer, 10% will still have the symptom Z. Determine the probability that a person with symptom Z has the cancer. Is the probability high or low?
- 6. (5%) Is $f(z) = (z + \bar{z})$ differentiable for all z (Yes/No)? Prove your answer.
- 7. (5%) Is $f(z) = |z|^2$ analytic at z = 0 (Yes/No)? Prove your answer.
- 8. (5%) Show all possible z such that $\sin(z) = i \sinh(1)$.
- 9. (5%) Let z be a complex number that satisfies $z \neq 1, z^3 = 1$. Find the value of $(1+z+2z^2)^9$.

九十二學年度<u>電機工程學</u>系(所)<u>甲、乙</u>組碩士班研究生招生考試

科目<u>工程數學</u> 科號 2301、2401 共 **3** 頁第 **3** 頁 *請在試卷【答案卷】內作答

- 10. A ring oscillator shown in Figure (a) is often used to monitor gate delays of a certain VLSI process. The ring oscillator is composed of a series of N inverter gates, where N is an odd number (i.e., $N = 1, 3, 5, \ldots$). Because the output voltage of the series of inverters feedbacks to the input with an opposite sign, the loop will sustain oscillation of a fixed frequency. To calculate this frequency, we simplify the series of inverters as in Figure (b), where each inverter is modelled as a voltage controlled current source (g_m) and a resistor (r_d) . And each inverter "sees" an output load of C.
 - (a) (10%) Please setup a system of ordinary differential equations for the inverter output voltages $(v_1, v_2, v_3, \ldots, \text{ and } v_o)$ in Figure (b). (Hint: The current passing through the voltage controlled current source (g_m) is $g_m v_{input}$, if the controlling voltage is v_{input} . For example, the current source of the first inverter produces a current of $g_m v_o$.)
 - (b) (10%) Please calculate the frequency of an N stage ring oscillator. (Hint: Laplace-transform the ODEs into the s domain and set $s = j\omega$. Solve for ω .)

(a) A ring oscillator.

(b) A simplified model of ring oscillator.