國立清華大學命題紙

1. Solve the following differential equations.

(a)
$$dy/dx = (2\cos x - \sin x)\delta(x); y(-1) = 1$$

(5%)

(b)
$$dy/dx = y \cosh x$$
; $y(0) = 1$

(5%)

2. Solve the following differential equations by LAPLACE TRANSFORM ONLY.

(a)
$$I(t) + \int_{0}^{t} I(t')dt' = 1$$

(5%)

(b)
$$d^2y/dx^2 = -k^2y$$
 (Find the general solution.)

(5%)

- 3. A function f(x) is defined in the range $[-\pi, \pi]$ as follows: $f(x) = \begin{cases} 0 & \text{for } -\pi < x \le 0 \\ 1 & \text{for } 0 < x \le \pi \end{cases}$. Expand f(x) into a complex Fourier series. (10%)
- Find the Fourier series expansion for f(t) and |f(t)| with f(t) = A sin(ωt + φ), where A, ω, and φ are all positive constants.
- 5. Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, with u(x = 0, t) = u(x = 3, t) = 0 for all t, and $u(x, t = 0) = \sin(14\pi x)$.

 Derive a complete solution. (15%)
- Solve u_{xx}-4u_{xy}+3u_{yy}=0 by D'Alembert's method; that is, change independent variables and reduce the equation into a simplified form (the normal form), and then write down the general solution. (10%)
- 7. Evaluate $\int_{0}^{3+i} Z^2 dZ$ (a) along the line $y = \frac{x}{3}$; (b) along the real line to 3 and then vertically to 3+i. (10 %).

國 立 淸 華 大 學 命 題 紙

8. Conformal mapping (10%)

Find a linear fractional transformation that maps $|Z| \le 1$ onto $|W| \le 1$ such that $Z = \frac{i}{2}$ is mapped to W=0 and sketch the image of the lines X=constant and Y=constant.

9. Laurent series expansion (15%)

Expand $f(z) = \frac{2z-1}{(z+1)(z-2)}$ into Laurent series centered at z=-I, i.e., into power

series in z+1. You should discuss the expansion in each regions of the complex plane and specify clearly the convergence region of each of your power series.