科號 4103 共 2_買第__ 頁 * 講在試卷【答案卷】內作答

Consider a causal and stable linear time-invariant system

$$y(n) - \frac{1}{12}y(n-1) - \frac{1}{12}y(n-2) = x(n)$$

Please determine its frequency response and impulse response.

(10%)

Determine the Fourier series expansion for an output signal from the half-wave rectifier. (10%)

Find the inverse Fourier transform of the function

$$F(\omega) = \frac{2a}{a^2 + \omega^2}$$

(You should consider the cases of t > 0 and t < 0 separately.)

(10%)

- 4. (a) Show that an LTI system with impulse response h[n] is BIBO-stable, if h[n] is absolutely summable. (6%)
 - (a) If, on the contrary, h[n] is not absolutely summable,
 - (i) Suppose that the input to the system is

$$x[n] = \begin{cases} 0 & \text{if } h[-n] = 0\\ \frac{h^*[-n]}{|h[-n]|} & \text{if } h[-n] \neq 0 \end{cases}$$

Does the input signal represent a bounded input?

(1%)

If so, what is the smallest number B such that $|x[n]| \leq B$ for all n?

(1%)

(ii) Calculate the output at n=0 for the above particular input.

(3%)

How do you interpret this result?

(4%)

For a low-pass filter, the desired response is

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & |\omega| \le \omega_{c} \le \pi \\ 0 & otherwise \end{cases}$$

(a) Find the filter coefficient $h_d[n]$ for $n \neq \tau$ and $n = \tau$.

(6%)

(b) Determine τ so that $h_d[n] = h_d[N-l-n]$.

(4%)

頁第 2 頁 ・請在試卷【答案卷】內作答 4103

6. Suppose a causal LTI system S with input x[n] and system function H(z) given as

$$H(z) = \frac{1 - \frac{5}{4}z^{-1} + \frac{3}{8}z^{-2}}{(1 + \frac{1}{4}z^{-1} + \frac{1}{8}z^{-2})}.$$
 The system H(z) can be cascaded of two subsystems as

H(z)=H1(z)H2(z), where
$$H1(z) = \frac{1}{(1+\frac{1}{4}z^{-1}-\frac{1}{8}z^{-2})}$$
 and H2(z)= $1-\frac{5}{4}z^{-1}+\frac{3}{8}z^{-2}$

- (a) Draw the block diagram of H(z) as a cascade connection of a block diagram of H1(z) followed by a block diagram of H2(z) using four unit delay elements which are called the direct form I.
- (b) Modify the direct form I to direct form II which requires only two unit delay elements.
- (c) Draw the block diagram of H(z) in parallel form which may only need two unit delay elements. (15%)

7. The z-transform of x[n] is given as
$$X(z) = \frac{1 - \frac{1}{4}z^{-1}}{(1 + z^{-1} - 2z^{-2})}$$
 (15%)

- (a) Can x[n] be a finite duration signal, why?
- (b) If x[n] is two-sided sequence, then where is the region of convergence? Is it stable?
- (c) If x[n] is right-sided sequence, then where is the region of convergence? Is it stable?
- (d) If x[n] is left-sided sequence, then where is the region of convergence? Is it stable?
- The sequence x(t) can be expanded in a Taylor series at t=0+ as

$$x(t) = [x(0+) + x^{(1)}(0+)t + \dots + x^{(n)}(0+)t^{n}/n! + \dots]u(t).$$
(15%)

Now, please answer the following questions:

- (a) Use the property of the Laplace transform of $e^{-it}(t^n/n!)u(t)$ is $1/(s+a)^n$ to find X(s) in terms of $x(0+), x^{(1)}(0+), \dots, x^{(n)}(0+) \dots (e.g. let a=0)$
- (b) Use the above property to prove the initial value theorem $x(0+)=\lim_{s\to\infty} sX(s)$

(c) Use the initial value theorem to find x(0+) given X(s) = s/(s+2)(s+4)