1. Consider the following system:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

compute the observer (estimator) gain matrix L so that the two observer (estimator) error poles are at -1 and -2, respectively. (15%)

- Please give the following meanings: (1) Gain margin; (2) Phase margin;
 The Nyquist stability criterion; (4) Routh's stability criterion. (15%)
- 3. Given the following armature voltage controlled dc motor drive with constant field excitation, an inertia load J, damping coefficient B, electromagnetic torque Ki and back emf $K(d\theta/dt)$. Let $x_i = i$, $x_2 = \theta$, $x_3 = d\theta/dt$ and output $y = \theta$:
 - (1) Find the state and output equations of the drive system.
 - (2) Would you suggest a reasonable specification for the drive system and describe how to design a state feedback controller to satisfy the specification? Assume all the states are available for feedback control. (15%)

 (1) Given the following closed-loop transfer function of an analog system with output feedback control

$$\frac{Y(s)}{U(s)} = \frac{3}{s(s+2)}$$

find a discrete algorithm corresponding to the above transfer function.

(2) What is the constraint which must be satisfied for this algorithm to result in a good approximation to the analog version. (10%)

- 5. (1) Find the range of K for the following system to be stable.
 - (2) Plot the corresponding root locus for the stable range of K. (15%)

- 6. A feedback controller is realized as shown with $R_1 \ll R_2$
 - (1) Find the transfer function of the controller $G_c(s) = V_c(s) / E(s)$.
 - (2) Find the simplified models of $G_c(s)$ for low frequency and high frequency error signals, respectively.
 - (3) Describe the major function of R_1 . (15%)

7. A bang-bang controller (or called ON/OFF controller) with hysteresis band $\beta = 0.1$ is to be realized using operational amplifier, design and draw the circuit. (10%)

8. The closed-loop control system is supposed to be stable, and its command and output trajectories are as shown. Sketch the trajectories of e and v_c. (5%)

