八十八學年度
 電機工程
 系(所)
 內
 組碩士班研究生招生考試

 科目
 電子學
 科號
 4603
 共
 頁第
 1 頁 *請在試卷【答案卷】內作答

- 1. A 6.8 V Zener diode specified at 5 mA to have V_z = 6.8 V and r_z = 20 Ω with I_{z_K} = 0.2 mA, is operated in a regulator circuit using a 200 Ω resistor and a 9 V supply.
 - (a) Estimate the knee voltage of the Zener. (5%)
 - (b) For no load, what is the lowest supply voltage for which the Zener remains in breakdown operation? (5%)
 - (c) For the nominal supply voltage, what is the maximum load current for which the Zener remains in breakdown operation? (5%)
- 2. The two-transistor amplifier shown in the following Figure combines an FET and a BJT to achieve both a high input impedance and a large voltage gain. By considering the g_{in} of Q₁ to be 1 mS (or 1 mA/V), and r_x and β for Q₂ to be 1 kΩ and 100, respectively, determine the voltage gain v₀/v_{in} of the amplifier. (10%)

3. For the devices in the circuit of the following Figure, $|V_t| = 1 \text{ V}$, $\lambda = 0$, $\gamma = 0$, $\mu_a C_{ex} = 20 \mu \text{ A/V}^2$, $L = 1 \mu \text{ m}$, and $W = 20 \mu \text{ m}$. Find the labeled current (I₁) and voltage (V₁). $\lambda = 10\%$

國立清華大學命題紙

- 4. In the circuit, the BJTs have $\beta=100$ and $r_s=\infty$.
 - (1) Determine the dc voltages V_{c2} and V_{c3} .
 - (2) Find the voltage gain V√V_i.

(10%)

 An amplifier can be modeled by the equivalent circuit as shown. Find the input impedance Z_i and the pole of V₀/V_i.

(10%)

國立清華大學命題和

	八十八學年度	電機工程	系(所)		組硬土班研究生招生考試
科目_	電	子學	戦 4603 共 3	[第]	[* 請在試卷【答案卷】內作答

- (15%) For op amp 741, answer the following questions.
 - (a) 5% Draw the simple model of 741 for small signal with $f >> f_0 = 4$ Hz.
 - (c) 10% Draw the 741 output waveform (V-t plot) for one period, if the output of the 741 is $V_o = 10 \sin{(2\pi \cdot t)}$ with slew rate= $\pm \pi/3$ V/ μ s, and output limits are from $-5\sqrt{3}$ V to $+5\sqrt{3}$ V.
- 7. (a) Write the 2nd order band-pass filter function T(S)=? 5%
- (b) For the same band-pass filter function T(S), if $|T(\omega_a)| = |T(\omega_b)|$ and $\omega_a \neq \omega_b$, find $\omega_a = 0$. (15%)
- An operational amplifier having infinite input resistance, zero output resistance and open-loop gain A(s)=A/(1+s/o_o) is connected in the circuit as shown.
 - (1) Find the circuit loop gain.
 - (2) If R₁=R₂ and C₁=C₂, find the high frequency comer ω_R of V_e/V₁.

(15%)

