- 1. A 6.8 V Zener diode specified at 5 mA to have $V_z = 6.8$ V and $r_z = 20$ Ω with $I_{2K} = 0.2$ mA, is operated in a regulator circuit using a 200 Ω resistor and a 9 V supply.
 - (a) Estimate the knee voltage of the Zener. (5%)
 - (b) For no load, what is the lowest supply voltage for which the Zener remains in breakdown operation? (5%)
 - (c) For the nominal supply voltage, what is the maximum load current for which the Zener remains in breakdown operation? (5%)
- 2. The two-transistor amplifier shown in the following Figure combines an FET and a BJT to achieve both a high input impedance and a large voltage gain. By considering the g_m of Q₁ to be 1 mS (or 1 mA/V), and r_x and β for Q₂ to be 1 kΩ and 100, respectively, determine the voltage gain v_o/v_{in} of the amplifier. (10%)

3. For the devices in the circuit of the following Figure, $|V_t| = 1 \text{ V}$, $\lambda = 0$, $\gamma = 0$, $\mu_u C_{ex} = 20 \mu \text{ A/V}^2$, $L = 1 \mu \text{ m}$, and $W = 20 \mu \text{ m}$. Find the labeled current (I₁) and voltage (V₁). (10%)

國立清華大學命題紙

 八十八學年度
 電機工程
 系(所)
 乙
 組碩士班研究生招生考試

 電子學
 科號
 4502
 頁第2頁*前在試卷【答案卷】內作答

- 4. In the circuit, the BJTs have $\beta=100$ and $r_o=\infty$.
 - (1) Determine the dc voltages V_{c2} and V_{c3} .
 - (2) Find the voltage gain V₄/V₁.

(10%)

 An amplifier can be modeled by the equivalent circuit as shown. Find the input impedance Z_k and the pole of V/V_i.

(10%)

- 6. The rated junction temperature of a power BJT is T_{j,max}=150 °C. The thermal resistance for the BJT package are θ_{dec-can}=2 °C/W and θ_{cano-aph}=18 °C/W. It is operated to dissipate a power of 5W.
 - Find the maximum allowable ambient temperature T_{Apper} when it is operated without heat sink.
 - (2) If the BJT is attached to a heat sink which gives θ_{monit}=4 °C/W and θ_{mi-mi}=6 °C/W, find T_{A,max}.
 (10%)
- (a) Write the 2nd order band-pass filter function T(S)=? 5%

目

- (b) For the same band-pass filter function T(S), if $|T(\omega_a)|=|T(\omega_b)|$ and $\omega_a\neq\omega_b$, find $\omega_a\circ\omega_b=?$.
- 8, (20%) Draw a decoder used for memory with 3 address lines in transistor level. Also show the logic function of each output.