國 立 清 華 大 夢 命 題 紙 1.Design the following circuit so that V_a=3V when I₁=0, and V_a changes by 40mA per 1mA of load current. Find the value of R and the junction area of each diode (assume all four diodes are equal) relative to a diode with 0.7V drop at 1mA current Assume n=1. (15%) 2.The current mirror circuit has $L_1 = L_2 = W_1 = 6 \mu$ m, $V_1 = 1V_1 - \mu_{\perp_1} C_{\infty} = 20 \mu$ A/V¹, $V_A = 50V_1$, and $I_{REF} = 10 \mu$ A. (a) Calculate the value of V_{GS_1} (b) Find the value of W_2 that will result in an output current of 100μ A when the output voltage is equal to the voltage at the gate. (C) If the output voltage increases by 5V, find the resulting value of I_{O_2} (15%) 八十七學年度 電機 工程 系 (所) ろ 組碩士班研究生入學考試 電子 と 男 科號 3 10 3 共 3 買第 2 頁 調在試卷【答案卷】內作答 - A differential amplifier as shown in Figure A has an ideal current source I with infinite internal resistance. Apply a small signal v_d to the differential input terminals, derive the expressions for - (a) the small signal transconductance of the transistor g_m - (b) the small signal emitter current i, 秘目 - (c) the input differential resistance R_{id} - (d) the differential voltage gain when the output is taken differentially $A_a = (2 \circ \frac{a}{2})$ Figure A - 4 A output stage amplifier as shown in figure C. - (a) Is this a class A. B. or C amplifier? - (b) What is the main problem of this class of amplifier as far as signal quality is concerned? - (c) Propose a modified circuit to eliminate the problem you stated in part (b). Figure C ## 國 立 清 華 大 學 命 題 紙 - 5. Give the transfer function of a second order bandpass filter with a center frequency of 10° rad/s, a center frequency gain of 10, and a 3-dB bandwidth of 10° rad s (10%) - 6. The circuit has ± 10 V output saturation levels and R=1k Ω . Find a value for R that gives hysteresis of 100mV width. (10%) 7 For the circuit shown below, let the op amp saturation voltages be $^{+}$ 10 V. R_1 =100k Ω , R_2 =R=1M Ω , and C=0.01 μ F. Find the frequency of oscillation (15%). Natural logarithm e = 2.718In 2=0.6931, In 3=1.0986, In 5=1.6094