甲 電機コ程系(所) 八十七學年度 程數學 科號 290 | 共 2 頁第 1 頁 :請在試卷【答案卷】內作答

- Write down a matrix with the required property or explain why no such matrix exists.
 - (a) (3%) Column space has basis $\{(1,2,-1)^T\}$, and row space has basis $\{(2,1)\}$.
 - (b) (3%) Column space has basis $\{(1,1,1)^T\}$, and nullspace has basis $\{(1,0,-1)^T\}$.
 - (c) (4%) The vector $(1,2,-2)^T$ is in the nullspace and (-2,1,0) is in the row space and the determinant -1.
- 2. Let T be the linear transformation from \mathbb{R}^2 into \mathbb{R}^2 , where \mathbb{R} is the set of all real numbers, defined by

$$T(x_1, x_2) = (3x_1/2 + x_2/2, x_1/2 + 3x_2/2).$$

- (a) (10%) Define T^n recursively by $T^n(x_1,x_2)=T(T^{n-1}(x_1,x_2))$ for $n\geq 2$ and $T^1(x_1,x_2)=T(x_1,x_2)$. Give a rule for T^n like the one which defines T for every 72.
- (b) (5%) Find an orthonormal basis in which the matrix representation of T is diagonal.
- 3. (5%) Continue from Problem 2. Suppose that X_1 and X_2 are independent and identically distributed (i.i.d.) Bernoulli random variables with parameter 0.5, i.e., $P(X_1 = 1) = P(X_1 = 0) = P(X_2 = 1) = P(X_2 = 0) = 0.5$. Find the probability $P(T(X_1, X_2) = (2, 2)).$
- 4. Are the following sets of vectors $a = (a_1, a_2, \ldots, a_n)$ in \mathbb{R}^n , where \mathbb{R} is the set of all real numbers, are subspaces of \mathcal{R}^n $(n \geq 3)$? If yes, find its dimension. If no, explain why.
 - (a) (5%) All **a** such that $a_1 \geq 0$.

科目

- (b) (5%) All a such that $a_1 + a_2 + 2a_3 = 0$, $3a_1 a_2 + a_3 = 0$, and $3a_1 5a_2 + 4a_3 = 0$.
- (a) (5%) Show that the linear fractional transform:

$$\omega=\frac{z-z_0}{cz-1}, c=\bar{z}_0, |z_0|<1$$

maps the unit disk in the z-plane onto the unit disk in the ω -plane.

(b) (5%) Find the potential between the infinite long cylinders $C_1: |z| = 1$ (grounded, i.e., $U_1 = 0$) and $C_2 : |z - 2/5| = 2/5$ (having potential $U_2 = 100$ volts).

- 6. (10%) Integrate the following function around the contour C: $f(z) = [\ln(z+3) + \cos z]/(z+1)^2$, C: the boundary of the square with vertices 2, -2, 2i, -2i, counter-clockwise.
- 7. Let $G(\omega)$ be the Fourier Transform of a real function g(x), i.e.,

$$G(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{-j\omega x} dx.$$

Now a real function f(x) is related to g(x) as follows:

$$f(x) = \frac{2}{3}g(x) + \frac{1}{4}[g(x-a) + g(x+a)],$$

where a is a positive real number. Let $F(\omega)$ be the Fourier transform of f(x). Answer the following questions:

- (a) (8%) What is the relationship between $F(\omega)$ and $G(\omega)$?
- (b) (7%) If f(x) is known, can one obtain g(x) accordingly? If the answer is yes, how?
- 8. (a) (5%) Solve the initial value problem,

$$y'' - 4y' + 3y = 0$$
, $y(0) = -1$, $y'(0) = 3$.

(b) (10%) Solve the initial value problem,

$$y'' - 4y' + 3y = 4e^{3x}, y(0) = -1, y'(0) = 3.$$

(10%) Solve the following initial value problem by means of Laplace Transform.

$$\begin{cases} y_1' = 6y_1 + 9y_2, & y_1(0) = -3, & y_2(0) = -3, \\ y_2' = y_1 + 6y_2. & \end{cases}$$