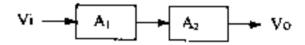
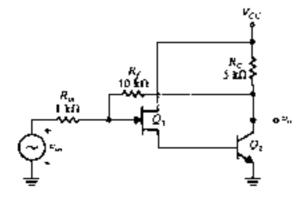

八十六學年度 电核系丙組 医电子 所 组硕士班研究生入學考試 和號 3202 共 四 页第 1 頁 *請在試卷【答案卷】內作答

- (a) What is the I-V characteristic of a diode-connected enhancement MOSFET? Please write down its expression and qualitatively plot the characteristic. (5%)
 - (b) For the NMOS transistor with enhancement load shown in Fig. 1, please plot its transfer characteristic and explain the usage of the different regions in the characteristic (5%)
 - (c) Derive the linear relation between v_i and v_o when the transistor Q_i is in saturation. Express the voltage gain in terms of device dimensions of Q_i and Q_i . (10%)
 - (d) Plot the small-signal equivalent circuit of Fig. 1 for the case in (c) (5%)

- 2. Two identical NMOS with parameters K=0 1mA/V², V_C 2V, and τ_o 50KΩ are used in the circuit. They are operated in saturation mode using the constant bias voltages V_A and V_B which give the drain current I=0.4mA.
 - (1)Determine the value V_A. (4%)
 - (2) Find the minimum values for V_B and V_L (6%)
 - (3)Sketch the small signal equivalent circuit and find the expression for the output resistance R_{o.} (5%)

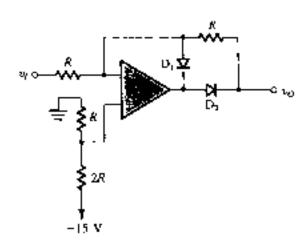


國立清華大學命題紙


八十六學年度 电 核 系 丙 組 竪 函 子 所 組 編 土 班 研究生 入學考試 相 图 子 學 科號 3202 共 四 頁第 2 頁 * 韻在試卷【答案卷】內作答

- 3. Two amplifiers with midband gain A₁ and A₂ are connected in series. The high frequency dominant poles for A₁ and A₂ are ω₁ and ω₂, respectively.
 - (1) Find the high frequency response for T(s)=Vo(s)/Vi(s) of the system.
 - (2)If $\omega_1 \le \omega_2$, sketch the Bode plot of |T(s)| for ω in the range $0.1\omega_2 \le \omega \le 10\omega_2$
 - (3)If $\omega_1 = \omega_2$, sketch the Bode plot of |T(s)| for ω in the range $0.1\omega_2 < m < 10\omega_2$. (10%)

Note: You can only sketch the magnitude response of Bode plot in Probs. (2) and (3)!



- 4 For the following circuit, g_m 1 mS or 1 mA/V and r_o = ∞ for FET Q_1 , and r_π =1 k Ω and β 100 for BJT Q_2 .
 - (a) Find the circuit voltage gain $v_{\rm o}/v_{\rm in}$ with R $_{\rm f}$ removed. (5%)
 - (b) Find the circuit voltage gain with R_f in place. (10%)

八十六學年度 電 核 永 丙 紅 星 地 子 可 組碩士班研究生入學者試 相 电 子 學 科號 3202 共 四 貞第 3 頁 # 項在試卷 【答案卷】內作答

5 Plot the transfer characteristic of the following circuit. (10%)

6. (15%) A Spice-like program is listed below without showing the value of each component

Guesa who am I

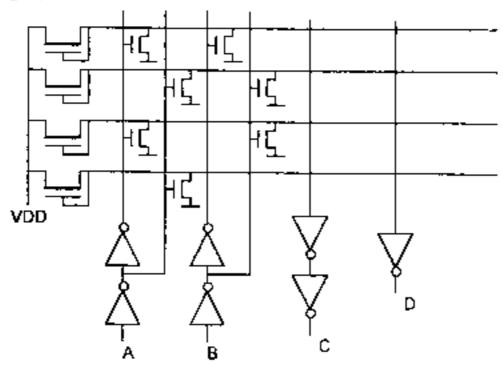
CL + 2

C2 2 0

R1 | 2

R2 2 0

Vin 1 0


Vo 2 0

Answer the following questions

- (a) Draw the circuit and mark each component.
- (b) What are the applications of this circuit if one of the capacitor is 0.—List all the possible situations with discussions.

八十八學年度 電 核永 万 紀 整 電子 所 組織士班研究生入學者試 相 電 子 學 科號 3202 共 四 頁第 4 頁 *請在試卷【答案卷】內作答

(10%) If the data stored in the ROM arc (C, D) = 00, 01, 10, and 11 as input (A, B)= 00, 01, 10, and 11, respectively. Complete the circuit (use NMOS FETs and Ground signal)

